Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (ВЕ)
Шрифт:

Базисом в этом пространстве может служить, например, следующая система из n векторов e1 = (1, 0,..., 0), e2 = (0, 1,..., 0),..., en = (0, 0,..., 1).

Множество R всех многочленов a + a1 u + + an un (любых степеней n ) от одного переменного с действительными коэффициентами a , a1 ,..., an с обычными алгебраическими правилами сложения многочленов и умножения многочленов на действительные числа образует В. п. Многочлены 1, u, u2 ,..., un (при любом n ) линейно независимы в R, поэтому R —

бесконечномерное В. п.

Многочлены степени не выше n образуют В. п. размерности n + 1 ; его базисом могут служить многочлены 1, u, u2 ,..., un .

Подпространства В. п. В. п. R' называется подпространством R, если R' 'I R (то есть каждый вектор пространства R' есть и вектор пространства R ) и если для каждого вектора v ^I r' и для каждых двух векторов v1 и v2 (v1 , v2 ^I R' ) вектор lv (при любом l ) и вектор v1 + v2 один и тот же независимо от того, рассматриваются ли векторы v, v1 ,v2 как элементы пространства R' или R. Линейной оболочкой векторов x1 , x2 ,... xp называется множество всевозможных линейных комбинаций этих векторов, то есть векторов вида a1 x1 + a2 x2 + + ap xp . В трёхмерном пространстве линейной оболочкой одного ненулевого вектора x1 будет, очевидно, совокупность всех векторов, лежащих на прямой, определяемой вектором x1 . Линейной оболочкой двух не лежащих на одной прямой векторов x1 и x2 будет совокупность всех векторов, расположенных в плоскости, которую определяют векторы x1 и x2 . В общем случае произвольного В. п. R линейная оболочка векторов x1 , x2 ,..., xp этого пространства представляет собой подпространство пространства R размерности р. В n-мерном В. п. существуют подпространства всех размерностей, меньших р. Всякое конечномерное (данной размерности k ) подпространство R' В. п. R есть линейная оболочка любых k линейно независимых векторов, лежащих в R'. Пространство, состоящее из всех многочленов степени lb n (линейная оболочка многочленов 1, u, u2 ,..., un ), есть (n + 1 ) мepное подпространство пространства R всех многочленов.

Евклидовы пространства. Для развития геометрических методов в теории В. п. нужно указать пути обобщения таких понятий, как длина вектора, угол между векторами и т.п. Один из возможных путей заключается в том, что любым двум векторам х и у из R ставится в соответствие число, обозначаемое (х, у ) и называемое скалярным произведением векторов х и у. При этом требуется, чтобы выполнялись следующие аксиомы скалярного произведения:

1) (х, у ) = (у, х ) (перестановочность);

2) (x1 + x2 , y ) = (x1 , y ) + (x2 , y ) (распределительное свойство);

3) (ax, у ) = a (х, у ),

4) (х, х ) ³ 0 для любого х , причем (х, х ) = 0 только для х = 0 .

Обычное скалярное произведение в трёхмерном пространстве этим аксиомам удовлетворяет. В. п., в котором определено скалярное произведение, удовлетворяющее перечисленным аксиомам, называется евклидовым пространством;

оно может быть как конечномерным (n-мерным), так и бесконечномерным. Бесконечномерное евклидово пространство обычно называют гильбертовым пространством . Длина |x | вектора x и угол
 между векторами х и у евклидова пространства определяются через скалярное произведение формулами

Примером евклидова пространства может служить обычное трёхмерное пространство со скалярным произведением, определяемым в векторном исчислении. Евклидово n-мepное (арифметическое) пространство En получим, определяя в n– мepном арифметическом В. п. скалярное произведение векторов x = (l1 , …, ln ) и y = (m1 , …, mn ) соотношением

(x, y ) = l1 m1 + l2 m2 + + ln mn . (2)

При этом требования 1)—4), очевидно, выполняются.

В евклидовых пространствах вводится понятие ортогональных (перпендикулярных) векторов. Именно векторы х и у называются ортогональными, если их скалярное произведение равно нулю: (х, у ) = 0. В рассмотренном пространстве En условие ортогональности векторов x = (l1 , …, ln ) и y = (m1 , …, mn ), как это следует из соотношения (2), имеет вид:

l1 m1 + l2 m2 + + ln mn = 0. (3)

Применение В. п . Понятие В. п. (и различные обобщения) широко применяется в математике и её приложениях к естествознанию. Пусть, например, R — множество всех решений линейного однородного дифференциального уравнения yn + a1 (x ) y (n + 1 ) + + an (x ) y = 0 . Ясно, что сумма двух решений и произведение решения на число являются решениями этого уравнения. Таким образом, R удовлетворяет условиям А. Доказывается, что для R выполнено обобщённое условие В. Следовательно, R является В. п. Любой базис в рассмотренном В. п. называется фундаментальной системой решений, знание которой позволяет найти все решения рассматриваемого уравнения. Понятие евклидова пространства позволяет полностью геометризовать теорию систем однородных линейных уравнений:

Рассмотрим в евклидовом пространстве En векторы ai = (ai1 , ai2 , …, ain ), i = 1, 2,..., n и вектор-решение u = (u1 , u2 ,..., un ). Пользуясь формулой (2) для скалярного произведения векторов En , придадим системе (4) следующий вид:

(ai , u ) = 0, i = 1, 2, …, m . (5)

Из соотношений (5) и формулы (3) следует, что вектор-решение u ортогонален всем векторам ai . Иными словами, этот вектор ортогонален линейной оболочке векторов ai , то есть решение u есть любой вектор из ортогонального дополнения линейной оболочки векторов ai . Важную роль в математике и физике играют и бесконечномерные линейные пространства . Примером такого пространства может служить пространство С непрерывных функций на отрезке с обычной операцией сложения и умножения на действительные числа. Упомянутое выше пространство всех многочленов является подпространством пространства С .

Поделиться с друзьями: