Большая Советская Энциклопедия (ВЫ)
Шрифт:
А. А. Уранов.
Высокочастотная сварка
Высокочасто'тная сва'рка, способ сварки , при котором металлы нагреваются токами высокой частоты. Соединяемые части (детали) располагаются под небольшим углом и соприкасаются в зоне сварки, где металл интенсивно нагревается до расплавления, сдавливается обжимными роликами и осаживается, образуя прочное сварное соединение. Различают В. с. индукционную и контактную. При индукционном нагреве ток в месте сварки (рис. 1 ) наводится индуктором, а при контактном способе (рис. 2 ) ток подводится контактами. В. с. широко применяется в производстве сварных труб. Труба непрерывно движется, для повышения интенсивности нагрева в заготовку трубы вводится ферритный магнитный сердечник. Для сварки
К. К. Хренов.
Рис. 1. Схема высокочастотной сварки труб индукционным способом: 1 — труба; 2 — индуктор; 3 — сердечник; 4 — обжимные ролики.
Рис. 2. Схема сварки труб контактным способом: 1 — труба; 2 — скользящие контакты; 3 — сердечник; 4 — обжимные ролики.
Высокочастотная связь
Высокочасто'тная связь, одновременная передача нескольких сообщений по одной линии связи посредством колебаний высоких частот; см. Многоканальная связь .
Высокочастотный нагрев
Высокочасто'тный нагре'в, нагрев токами высокой частоты (свыше 10 кгц ); см. Диэлектрический нагрев , Индукционный нагрев .
Высокоэластическое состояние
Высокоэласти'ческое состоя'ние, одно из трёх физических состояний аморфных полимеров (см. Аморфное состояние ). Оно проявляется в интервале температур между температурами стеклования и текучести у полимеров, макромолекулы которых имеют цепное строение и достаточно гибки. В. с. наблюдается также и у полимеров, макромолекулы которых прочно связаны в пространственную сетку, имеющую достаточно длинные и гибкие отрезки цепного строения между узлами. Полимеры в В. с. отличаются способностью к огромным обратимым деформациям растяжения (до многих сотен процентов), низкими значениями модуля эластичности [0,1—10 Мн/м2 (1—100 кгс/см2 )], выделением тепла при растяжении, возрастанием равновесного модуля эластичности с температурой и др. особенностями. Наиболее характерные представители высокоэластичных материалов — каучуки и резины.
В. с. возникает благодаря способности цепных молекул полимеров к изменению формы. Гибкие цепные молекулы под влиянием теплового движения непрерывно меняют свою форму, т. е. принимают ряд различных конформаций. При достаточно большой длине молекул число разрешённых скрученных конформаций подавляюще велико. Воздействие растягивающих сил распрямляет макромолекулы; после прекращения действия сил она вновь скручивается благодаря хаотическому характеру теплового движения. Таким образом, сопротивление изменению формы полимерного тела в основном обусловлено не изменением внутренней энергии, как в кристаллических телах, а увеличением числа более распрямлённых конформаций, являющихся менее вероятными. Поэтому изотермическая деформация идеального высокоэластичного полимера связана с уменьшением энтропии и в этом смысле аналогична изотермическому сжатию идеального газа. Соответственно, для термодинамически равновесной высокоэластической деформации сила, стремящаяся сократить растягиваемое внешними силами полимерное тело, определяется из уравнения:
где S — энтропия, l — длина растягиваемого образца и Т — абсолютная температура. Согласно статистической теории термодинамически равновесных высокоэластических деформаций полимеров, все особенности В. с. являются следствием теплового движения длинных и гибких цепных молекул. При достаточно быстрых деформациях, когда цепные молекулы уже не успевают изменять свою форму, а также при очень больших деформациях, когда дальнейшее распрямление молекул затруднено, полимеры утрачивают способность к высокоэластической деформации и ведут себя подобно обычным твёрдым телам.
В. с. отличается своеобразным сочетанием свойств упругих твёрдых тел (способность к восстановлению исходной формы тела), упругих
свойств газообразных тел (кинетическая природа эластичности) и общих свойств жидких тел (значения коэффициента теплового расширения, сжимаемости и др.).Лит.: Каргин В. А., Слонимский Г. Л., Краткие очерки по физико-химии полимеров, 2 изд., М., 1967; Тагер А. А., Физико-химия полимеров, 2 изд., М., 1969.
Г. Л. Слонимский.
Высота апогея (перигея)
Высота' апоге'я (периге'я), расстояние от апогея (перигея ) орбиты искусственного спутника Земли до земной поверхности, отсчитываемое по прямой, проходящей через центр Земли. За поверхность Земли принимается поверхность того или иного земного эллипсоида (см. Земной сфероид ).
Высота (геометрич.)
Высота' в геометрии, отрезок перпендикуляра, опущенного из вершины геометрической фигуры (например, треугольника, пирамиды, конуса) на её основание или продолжение основания, а также длина этого отрезка. В. призмы, цилиндра, шарового слоя, усечённых параллельно основанию пирамиды и конуса — расстояние между верхним и нижним основаниями. На рис . изображены В. (h ) треугольников, трапеции и усечённого конуса.
Рисунок к ст. Высота.
Высота звука
Высота' зву'ка, качество звука , определяемое человеком субъективно на слух и зависящее в основном от его частоты, т. е. от числа колебаний в секунду. С ростом частоты В. з. повышается. В небольших пределах В. з. изменяется также в зависимости от громкости звука и от его тембра. Высота сложных звуков определяется частотой основного тона, вне зависимости от соотношения между его амплитудой и амплитудой более высоких слагающих.
Высота небесного светила
Высота' небесного светила, угол между направлением на светило и плоскостью истинного горизонта; см. Небесные координаты .
Высота сечения
Высота' сече'ния рельефа, разность высот двух последовательных горизонталей на топографической карте или плане. В зависимости от масштаба и назначения карты (плана) применяются В. с., равные 0,5 (для мелиорации) 1, 2, 5, 10 м и др.
Высотная болезнь
Высо'тная боле'знь, болезненное состояние, возникающее при подъёме на большие (свыше 3000 м ) высоты вследствие понижения парциального давления кислорода во вдыхаемом воздухе. Развитие В. б. связано с нарушением функций отдельных органов и систем, в первую очередь клеток высших отделов центральной нервной системы, возникающим в результате кислородного голодания — гипоксии . При подъёме на высоты до 3000 м кислородная недостаточность у здоровых людей компенсируется усилением лёгочной вентиляции (учащение дыхания, увеличение его глубины), ускорением кроветока, увеличением в крови количества эритроцитов, гемоглобина. При дальнейшем подъёме гипоксия нарастает, так как функции организма не обеспечивают достаточной компенсации. Недостаток кислорода в окружающем воздухе ведёт к уменьшению парциального давления кислорода в лёгких и к снижению насыщения артериальной крови кислородом. Основные признаки В. б.: одышка, сердцебиение, головокружение, шум в ушах, головная боль, тошнота, мышечная слабость, потливость, нарушение остроты зрения, сонливость, снижение работоспособности и др. Развитие симптомов В. б. носит фазовый характер и зависит от скорости подъёма и от функционального состояния организма. Алкоголь, утомление, бессонница снижают переносимость больших высот.
Лечение: спуск с высоты, покой, сердечные средства, крепкий чай или кофе. В тяжёлых случаях — вдыхание кислорода. Профилактика: при подъёме на большие высоты вдыхание кислорода при помощи специальных аппаратов. Занятия спортом, связанные с повышенной потребностью организма в кислороде, а следовательно, с гипоксией, способствуют повышению устойчивости организма к гипоксии. Разновидностью В. б. является горная болезнь, в возникновении которой наряду с недостатком кислорода играют роль такие добавочные факторы, как физическое утомление, охлаждение, ультрафиолетовое излучение и т.д. По мере акклиматизации к горному климату симптомы горной болезни ослабевают. Относительная стабилизация физиологических показателей начинается примерно после 3-недельного пребывания в горах.