Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия
Шрифт:
, ничего не изменяющая в кристалле, называется отождествлением, геометрически соответствующая неподвижности объекта или повороту его на 360° вокруг любой оси. Число операций, образующих группу G, называется порядком группы.

Группы симметрии классифицируют: по числу n измерений пространства, в которых они определены; по числу т измерений пространства, в которых объект периодичен (их соответственно обозначают Gmn) и по некоторым другим признакам. Для описания кристаллов используют различные группы симметрии, из которых важнейшими являются пространственные группы симметрии G33, описывающие атомную структуру кристаллов, и точечные группы симметрии G3 , описывающие их внешнюю форму. Последние называются также кристаллографическими классами.

Симметрия огранки кристаллов. Операциями точечной симметрии являются: повороты вокруг оси симметрии порядка N на 360°/N (рис. 2, а), отражение в плоскости симметрии (зеркальное отражение, рис. 2, б), инверсия

(симметрия относительно точки, рис. 2, в), инверсионные повороты
 (комбинация поворота на 360°/N с одновременной инверсией, рис. 2, г). Вместо инверсионных поворотов иногда рассматривают зеркальные
повороты
. Геометрически возможные сочетания этих операций определяют ту или иную точечную группу (рис. 3), которые изображаются обычно в стереографической проекции. При преобразованиях точечной симметрии по крайней мере одна точка объекта остаётся неподвижной — преобразуется сама в себя. В ней пересекаются все элементы симметрии, и она является центром стереографической проекции.

Точечные преобразования симметрии g [x1, x2, x3] =

 описываются линейными уравнениями:

x'1 = а11х1 + a12x2 + a13x3,

x'2 = a21x1 + a22x2 + a23x3, (2)

x'3 = a31x1 + a32x2 + a33x3,

т. е. матрицей коэффициента (aij). Например, при повороте вокруг хз на угол a = 360°/N матрица коэффициентов имеет вид:

, (3)

а при отражении в плоскости x1, x2 имеет вид:

(3a)

Поскольку N может быть любым, число групп

 бесконечно. Однако в кристаллах ввиду наличия кристаллической решётки возможны только операции и соответственно оси симметрии до 6-го порядка (кроме 5-го), которые обозначаются символами: 1, 2, 3, 4, 6, а также инверсионные оси:
 (она же центр симметрии),
 = m (она же плоскость симметрии),
. Поэтому количество точечных кристаллографических групп, описывающих внешнюю форму кристаллов, ограничено. Эти 32 группы С. к. приведены в таблице. В международные обозначения точечных групп входят символы основных (порождающих) элементов симметрии, им присущих. Эти группы объединяются по симметрии формы элементарной ячейки (с периодами а, b, с и углами a, b, g) в 7 сингоний кристаллографических — триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую. Принадлежность кристалла к той или иной группе определяется гониометрически (см. Гониометр) или рентгенографически (см. Рентгеновский структурный анализ).

Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей. Эти группы называются группами 1-го рода. Группы, содержащие отражения, или инверсионные повороты, описывают кристаллы, в которых есть зеркально равные части (но могут быть и совместимо равные части). Эти группы называются группами 2-го рода. Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах, условно называемых «правой» и «левой», каждая из них не содержит элементов симметрии 2-го рода, но они зеркально равны друг другу (см. Энантиоморфизм, Кварц).

Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещенная в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Например, для описания регулярной структуры сферических вирусов (рис. 4), в оболочках которых соблюдаются кристаллографические принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532.

Симметрия физических свойств. Предельные группы. В отношении макроскопических физических свойств (оптических, электрических, механических и др.), кристаллы ведут себя как однородная анизотропная среда, т. е. дискретность их атомной структуры не проявляется. Однородность означает, что свойства одинаковы в любой точке кристалла, однако при этом многие свойства зависят от направления (см. Анизотропия). Зависимость от направления можно представить в виде функции и построить указательную поверхность данного свойства (рис. 5, см. также ст. Кристаллооптика). Эта функция, которая может быть различной для разных физических свойств кристалла (векторной или тензорной) имеет определённую точечную симметрию, однозначно связанную с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше её по симметрии (принцип Неймана).

Многие из свойств кристаллов, принадлежащих к определённым классам, описываются предельными точечными группами, содержащими оси симметрии бесконечного порядка, обозначаемые yen. Наличие оси yen означает, что объект совмещается с собой при повороте на любой, в том числе бесконечно малый угол. Таких групп 7, они представлены на рис. 6 образцовыми фигурами и соответствующими символами. Т. о., всего имеется 32 + 7 = 39 точечных групп, описывающих симметрию свойств кристаллов. Зная группу С. к., можно указать возможность наличия или отсутствия в нём некоторых физических свойств (см. Кристаллы, Кристаллофизика).

Обозначения и названия 32 групп точечной симметрии

Сингония Обозначения Название Соотношение констант элементарной ячейки
международные по Шенфлису
Триклинная С1 Моноэдрическая а ¹ b ¹ с
С1 Пинакоидальная a ¹ b ¹ g ¹ 90°
Моноклинная 2С2 Диэдрическая осевая а ¹ b ¹ с
mCs Диэдрическая безосная a = g = 90°
2/mC2h Призматическая b ¹ 90°
Ромбическая 222D2 Ромбо-тетраэдрическая а ¹ b ¹ с
mmC2u
Ромбо-пирамидальная
mmmD2h Ромбо-дипирамидальная a = b = g = 90°
Тетрагональная 4C4 Тетрагонально-пирамидальная а = b ¹ с a = b = g = 90°
422D4 Тетрагонально-трапецоэдрическая
4/mC4h Тетрагонально-дипирамидальная
4mmC4u Дитетрагонально-пирамидальная
4/mmmD4h Дитетрагонально-дипирамидальная
S4 Тетрагонально-тетраэдрическая
D2d Тетрагонально-скаленоэдрическая
Тригональная 3C3 Тригонально-пирамидальная а = b = с a = b = g ¹ 90°
32D3 Тригонально-трапецоэдрическая
3mC3u Дитригонально-пирамидальная
C3i Ромбоэдрическая
D3d Дитригонально-скаленоэдрическая
C3h Тригонально-дипирамидальная
Гексагональная
D3h Дитригонально-дипирамидальная а = b ¹ с a = b = 90° g = 120°
6C6 Гексагонально-пирамидальная
62D6 Гексагонально-трапецоэдрическая
6/mC6h Гексагонально-дипирамидальная
6mmC6u Дигексагонально-пирамидальная
6/mmmD6h Дигексагонально-дипирамидальная
Кубическая 23T Тритетраэдрическая а = b = с a = b = g = 90°
m3Th Дидодекаэдрическая
Td Гексатетраэдрическая
43O Триоктаэдрическая
m3mOh Гексоктаэдрическая

Пространственная симметрия атомной структуры кристаллов (кристаллической решётки) описывается пространственными группами симметрии

. Характерными для решётки операциями являются три некомпланарных переноса а, b, с, называемых трансляциями, которые задают трёхмерную периодичность атомной структуры кристаллов. Сдвиг (перенос) структуры на векторы a1, b2, c3 или любой вектор t = p1a1 + p2b2 + p3c3, где p1, p2, p3 — любые целые положительные или отрицательные числа, совмещает структуру кристалла с собой, и следовательно, является операцией симметрии, удовлетворяющей условиям (1, а, б). Параллелепипед, построенный на векторах а, b и c, называется параллелепипедом повторяемости или элементарной ячейкой кристалла (рис. 7, а, б). В элементарной ячейке содержится некоторая минимальная группировка атомов, «размножение» которой операциями симметрии, в том числе трансляциями, образует кристаллическую решётку. Элементарная ячейка и размещение в ней атомов устанавливается методами рентгеновского структурного анализа, электронографии или нейтронографии.

Вследствие возможности комбинирования в решётке трансляций и операций точечной симметрии в группах G33 возникают операции и соответствующие им элементы симметрии с трансляционной компонентой — винтовые оси различных порядков и плоскости скользящего отражения (рис. 2, д).

Всего известно 230 пространственных (фёдоровских) групп симметрии

, и любой кристалл относится к одной из этих групп. Трансляционные компоненты элементов микросимметрии макроскопически не проявляются, например винтовая ось в огранке кристаллов проявляется как соответствующая по порядку простая поворотная ось. Поэтому каждая из 230 групп
 макроскопически сходственна с одной из 32 точечных групп. Например, точечной группе mmm или D2h сходственны 28 пространственных групп. Совокупность переносов, присущих данной пространственной группе, есть её трансляционная подгруппа, или Браве решётка; таких решёток существует 14.

Поделиться с друзьями: