Бозон Хиггса. От научной идеи до открытия «частицы Бога»
Шрифт:
Сербер согласился, что такой результат приводит в оторопь. Всего через 12 лет после открытия электрона американские физики Роберт Милликен и Харви Флетчер провели свой знаменитый эксперимент с каплей масла, измерив фундаментальную единицу электрического заряда, переносимого одиночным электроном. Выраженный в стандартных единицах, заряд электрона представляет собой сложное число со многими знаками после запятой [55] , однако вскоре стало ясно, что заряженные частицы переносят заряды, которые являются целыми произведениями этой элементарной единицы. Ни разу за 54 года после нахождения величины элементарного электрического заряда не возникало даже слабого намека на то, что могут существовать частицы с меньшим зарядом.
55
В настоящее время величина заряда электрона принята равной приблизительно 1,602176487(40) x 10–19 Кл, где число в скобках означает неопределенность последних двух знаков.
В
Но, как бы ни пугали следствия, логика, приводящая к ним, была железной. Группа симметрии SU(3) требовала фундаментального представления, а то обстоятельство, что известные частицы можно соединить в два октета, очень намекало на существование триплета фундаментальных частиц. Дробные заряды представляли трудность, но, может быть, как подумалось Гелл-Манну, если «кворки» всегда заключены внутри более крупных адронов, тогда это может объяснить, почему частицы с дробным зарядом никогда не наблюдались в экспериментах.
56
Каприз, причуда (англ.). (Примеч. пер.)
Пока идеи Гелл-Манна постепенно оформлялись, он наткнулся на отрывок из «Поминок по Финнегану» Джеймса Джойса, который помог ему придумать имя этим невиданным абсурдным частицам:
«Эй, три кварка для мюстера Марка!»Верно, выглядит он не особенно ярко,И повадки его как у сына кухарки… [57]«Вот оно! – заявил он. – Нейтрон и протон состоят из трех кварков!» Новое слово не вполне рифмовалось с первоначальным «кворком», но звучало довольно похоже. «Вот так я и выбрал это название. Просто в шутку. Как реакция против высокопарного научного языка» [58] .
57
Перевод по изд.: Джойс Д. Стихотворения. М.: Радуга, 2003.
58
Интервью Марри Гелл-Манна Роберту Кризу и Чарльзу Манну, 3 марта 1983. Цит. по: Crease and Mann. P. 282.
Гелл-Манн опубликовал двухстраничную статью с изложением своих мыслей в феврале 1964 года. Он назвал три кварка буквами u, d и s. Хотя в статье этого не говорилось, но буквы означали up (верхний) с зарядом +2/3, down (нижний) с зарядом —1/3 и strange (странный), также с зарядом —1/3. Барионы образованы различными комбинациями трех кварков, а мезоны – комбинациями кварков и антикварков.
В этой системе протон состоит из двух u-кварков и одного d-кварка (uud) с суммарным зарядом +1. Нейтрон состоит из u-кварка и двух d-кварков (udd) с суммарным зарядом 0. По мере уточнения модели обнаружилось, что изоспин связан с присутствием в частице верхнего и нижнего кварков. Нейтрон и протон обладают изоспинами, которые можно рассчитать как половину от количества верхних кварков минус количество нижних кварков [59] . Для нейтрона это дает изоспин 1/2 x (1–2), то есть —1/2. «Поворот» изоспина нейтрона, следовательно, эквивалентен превращению нижнего кварка в верхний кварк, что дает протон с изоспином 1/2 x (2–1), или +1/2. Таким образом, сохранение изоспина становится сохранением количества кварков. Бета-радиоактивность подразумевает превращение нижнего кварка в нейтроне в верхний кварк, что превращает нейтрон в протон с испусканием частицы W—, как показано на рис. 11.
59
Отношение несколько более сложное. На самом деле изоспин равен 1/2 x (количество верхних кварков минус количество верхних антикварков) минус (количество нижних кварков минус количество нижних антикварков).
Рис. 11
Механизм ядерного бета-распада получил объяснение в смысле слабого распада нижнего кварка внутри нейтрона (d) на верхний кварк (u), превращающего нейтрон в протон с испусканием виртуальной частицы W—
У странных частиц величина странности выражается просто как минус количество присутствующих странных кварков (s-кварков) [60] .
Тогда очевидно, что схема заряда или изоспина в сравнении со странностью всего лишь показывает наличие кварков в частицах, при этом разные комбинации кварков появляются в разных местах схемы (см. рис. 12).60
И снова взаимоотношение несколько более сложное. Странность выражается как минус (количество странных кварков минус количество странных антикварков).
Рис. 12
Восьмеричный путь может легко объяснить разнообразные возможные комбинации верхних, нижних и странных кварков, что проиллюстрировано здесь на примере барионного октета. 0и 0 состоят из верхних, нижних и странных кварков, но отличаются изоспином. У 0 изоспин равен нулю, а у 0 – единице. Эту разницу можно проследить до различных возможных комбинаций волновых функций верхнего и нижнего кварков. У 0 антисимметричная (ud – du) комбинация, у 0 симметричная (ud + du)
И снова Гелл-Манн работал в одиночку, но был не единственным теоретиком, который напал на след фундаментального объяснения. После возвращения из Великобритании в Израиль Неэман вместе с израильским математиком Хаимом Гольдбергом работал над весьма умозрительной гипотезой фундаментального триплета, но они не рискнули заявить, что это могут быть «реальные» частицы с дробными электрическими зарядами.
Примерно в то же время, когда Гелл-Манн опубликовал свои теоретические выкладки, бывший студент Калтеха Джордж Цвейг разработал полностью эквивалентную схему, основанную на фундаментальном триплете частиц, которые он назвал тузами. Он пришел к выводу, что барионы можно составить из троек (триплетов) тузов, а мезоны – из двоек (дублетов) тузов и антитузов. Цвейг работал научным сотрудником в ЦЕРНе, и препринт с его идеями вышел в январе 1964 года. Позднее Цвейг увидел статью Гелл-Манна, быстро усовершенствовал модель, выпустил препринт на 80 страниц в ЦЕРНе и отправил его в престижный журнал Physical Review.
Рецензенты обрушились на него с криками. Статью так и не напечатали.
Гелл-Манн был уже признанным ученым, сделавшим много важнейших открытий, и ему промах с кварками был простителен. Будучи молодым научным сотрудником, Цвейг находился не в таком удачном положении. Когда некоторое время спустя он хотел устроиться в один из ведущих университетов, некий уважаемый член профессорско-преподавательского состава, старший теоретик, заявил, что его модель с тузами – шарлатанская выдумка. Цвейгу отказали в месте, и в конце 1964 года он вернулся на работу в Калтех. Впоследствии Гелл-Манн приложил все усилия, чтобы роль Цвейга в открытии кварков была признана.
Кварковая модель все замечательно упростила, но на самом деле это была всего лишь теоретическая игра со схемами. У нее просто не было никаких экспериментальных оснований. Гелл-Манн никак не облегчил свою задачу тем, что был довольно скрытен насчет статуса новых частиц. Не желая ввязываться в философские споры о реальности частиц, которые в принципе нельзя увидеть, он называл кварки «математическими». Некоторые понимали это так, будто Гелл-Манн не считает, что кварки состоят из настоящего вещества, что они существуют в реальности и соединяются, производя реально существующие эффекты.
Цвейг оказался смелее (или безрассуднее, как посмотреть). Во втором препринте, напечатанном в ЦЕРНе, он заявил: «Есть и некоторая возможность, что модель ближе к природе, чем мы думаем, и что мы состоим из множества тузов с дробным зарядом» [61] .
Филип Андерсон, занимавшийся физикой твердого тела, не верил в теорему Голдстоуна. Многочисленные практические примеры в физике твердого тела совершенно очевидно говорили, что бозоны Намбу – Голдстоуна не всегда возникают при спонтанном нарушении калибровочной симметрии. Симметрии нарушались постоянно, однако физиков твердого тела не заливали потоки безмассовых частиц, аналогичных фотонам, которые бы возникали в результате. Например, в сверхпроводниках не генерировались безмассовые частицы. Что-то тут было не так.
61
Zweig G. An SU(3) Model for Strong Interaction Symmetry и its Breaking // CERN Preprint 8419/TH.412. 1964. February 21. P. 42.
В 1963 году Андерсон предположил, что трудности, которые пытаются решить теоретики квантовых полей, могут в каком-то смысле разрешиться сами [62] :
«В таком случае, вероятно, учитывая аналог сверхпроводимости, что теперь открыты возможности… которые без всякого труда включают либо безмассовые калибровочные бозоны Янга – Миллса, либо безмассовые бозоны [Намбу – ]Голдстоуна. Эти два типа бозонов, по-видимому, способны «сократить» друг друга, оставив лишь бозоны, обладающие конечной массой».
62
Anderson P.W. Physical Review. 1963. P. 441 // Farhi E., Jackiw R. (eds.). Dynamical Gauge Symmetry Breaking: A Collection of Reprints. Singapore: World Scientific, 1982. P. 50.