Чтение онлайн

ЖАНРЫ

Бозон Хиггса. От научной идеи до открытия «частицы Бога»

Бэгготт Джим

Шрифт:

Многоцелевые детекторы ATLAS и CMS предназначены для поиска бозона Хиггса и другой «новой физики», которая может продемонстрировать существование суперсимметричных частиц и разрешить загадку темной материи. Детектор ATLAS состоит из ряда все более увеличивающихся концентрических цилиндров, расположенных вокруг точки пересечения протонных пучков. Функция внутреннего детектора в том, чтобы отслеживать заряженные частицы, идентифицировать их и измерять импульс. Внутренний детектор окружен большим соленоидальным (в виде катушки) сверхпроводящим магнитом, который изгибает траекторию движения заряженных частиц.

Снаружи находятся электромагнитный и адронный калориметры, которые поглощают заряженные частицы – фотоны и адроны – и выводят их энергию из создаваемых ими потоков частиц. Мюонный спектрометр измеряет импульс мюонов, которые проходят сквозь другие элементы детектора. В нем используется тороидальное (в форме пончика) магнитное поле, создаваемое большими сверхпроводящими магнитами, образующими восемь баррелей и два торцевых тороида. Это самые крупные сверхпроводящие магниты в мире (см. рис. 24).

Рис. 24

Детектор ATLAS использует тороидальное (в форме

пончика) магнитное поле, генерируемое огромными сверхпроводящими магнитами, которые образуют восемь цилиндрических баррелей и два торцевых тороида. Это крупнейшие сверхпроводящие магниты в мире. Источник:

ATLAS не может распознавать нейтрино, и их присутствие приходится выводить из расхождения энергии между столкнувшимися и обнаруженными частицами. Поэтому детектор должен быть герметичным: ни одна частица, кроме нейтрино, не должна ускользнуть незамеченной.

Детектор ATLAS имеет около 45 метров в длину и 25 метров в высоту, примерно вдвое меньше собора Парижской Богоматери. Он весит около 7 тысяч тонн, как Эйфелева башня или сто «Боингов-747» без пассажиров. Коллаборацию ATLAS возглавляет итальянский физик Фабиола Джанотти, она включает 3 тысячи физиков из более чем 174 университетов и лабораторий 38 разных стран.

У детектора CMS другая конструкция, но аналогичные возможности. Внутренний детектор представляет собой трекинговую систему из кремниевых пиксельных и стриповых детекторов, которые измеряют положение заряженных частиц, что позволяет восстановить их путь. Как и в детекторе ATLAS, электромагнитный и адронный калориметры измеряют энергию заряженных частиц, фотонов и адронов. Мюонный спектрометр фиксирует данные о мюонах, проникающих сквозь калориметры.

Детектор CMS называется компактным, то есть в нем используется один крупный соленоидальный сверхпроводящий магнит, поэтому он меньше детектора ATLAS. Однако он не так уж мал: 21 метр в длину, 15 метров в ширину и 15 метров в высоту (см. рис. 25). На веб-сайте детектора можно узнать, что он расположен в подземной «пещере, где могли бы поместиться все жители Женевы, хотя и без удобства» [149] . Коллаборацию детектора CMS возглавляет итальянский физик Гвидо Тонелли, и она также включает 3 тысячи физиков и инженеров из 183 институтов 38 стран.

В 1997 и 1998 годах началась работа по строительству компонентов ATLAS и CMS и рытье котлованов под их размещение. Монтаж детекторов закончился в начале 2008 года.

Рис. 25

Питер Хиггс (слева) посещает детектор CMS во время строительства. Здесь он с официальным представителем CMS Теджиндером Верди.

Источник: © copyright CERN

В августе 2008 года все 27 километров Большого адронного коллайдера были охлаждены до рабочей температуры. Потребовалось более 10 тысяч тонн жидкого азота и 150 тонн жидкого гелия, чтобы целиком заполнить магниты.

БАК был готов к запуску.

«Это фантастический миг, – заявил 10 сентября 2008 года Линдонд Эванс, руководитель проекта БАК. – Наконец-то мы стоим на пороге новой эпохи знаний о происхождении и эволюции Вселенной» [150] .

Как ни печально, восторг Эванса быстро улетучился. БАК заработал в 10:28 утра по местному времени. Физики сбились в тесном центре управления и подняли радостный шум, когда на экране мелькнула вспышка света, сообщив о том, что высокоскоростные протоны отправились в путь по 27-километровому кольцу коллайдера при рабочей температуре всего на два градуса выше абсолютного нуля. Вот такой скромной на вид (к некоторому разочарованию миллиарда зрителей, которые, как считается, следили за происходящим по телевизору) оказалась кульминация двух десятилетий неустанных трудов целой армии физиков, проектировщиков, инженеров и строителей.

В 3 часа того же дня второй пучок протонов отправился по кольцу в противоположном направлении. И вскоре начались проблемы. Всего через девять дней электрический контакт между двумя сверхпроводящими магнитами расплавился. Электрическая дуга пробила изоляцию гелиевой системы охлаждения магнитов. Гелий попал в сектор 3–4 туннеля БАКа, произошел взрыв, и 53 магнита были повреждены, а протонные трубы загрязнены сажей.

Не было никакой надежды восстановить коллайдер до его запланированной остановки на зиму, и повторный запуск предварительно назначали на весну 2009 года. Однако возникли новые осложнения, и на совещании в Шамони в феврале 2009 года руководство ЦЕРНа решило продолжить работы.

Дата повторного пуска отодвинулась на неопределенное будущее.

149

http://cms.web.cern.ch/news/detector-overview.

150

Evans L. // CERN Bulletin 37–38. 2008.

10

Шекспировский вопрос

Глава, в которой БАК работает так, как никто не ожидал (кроме Линдона Эванса), и за несколько месяцев выполняет годовой план, а у бозона Хиггса остается все меньше мест, где он может прятаться

Лишь в начале сентября 2009 года, почти через год после первого запуска, последний из восьми секторов БАКа начал процедуру охлаждения. К концу октября все восемь секторов снова были охлаждены до своей рабочей температуры, и в ноябре БАК снова заработал. Несмотря на то что в зимние месяцы электричество стоит дороже, коллайдер проработал всю зиму 2009/10 года, главным образом чтобы физики ЦЕРНа не дали обогнать себя соперникам на Тэватроне, который тоже дразняще близко подошел к обнаружению бозона Хиггса.

За первые несколько месяцев 2010 года пучки протонов, летящие по двум кольцам БАКа в противоположных направлениях, разогнались до 3,5 ТэВ, а после этого столкнулись лоб в лоб. Первые столкновения на 7 ТэВ были зарегистрированы 30 марта. Эта энергия столкновения сохранялась при постепенном увеличении интенсивности и светимости пучков. Детекторы ATLAS и CMS зарегистрировали события, которые можно было отнести на счет очень многих старых знакомцев, поскольку весь сонм частиц Стандартной модели, открытых за шестьдесят с лишним лет, был обнаружен всего за несколько месяцев. Среди них были нейтральный пион, впервые открытый в 1950 году, эта-, ро– и фи-мезоны (образованные разными комбинациями верхних, нижних и странных

кварков), J/-мезон, Y-мезона и W– и Z-бозоны (см. рис. 26). В июле физики собирали новые данные об истинном кварке.

+ масса (ГэВ/с2)

Рис. 26

В 2010 году, в первые несколько месяцев работы на энергии 7 ТэВ, коллаборации ATLAS и CMS зарегистрировали события – кандидаты на весь спектр известных частиц Стандартной модели. На графике коллаборации CMS показаны данные для J/-мезона, ипсилона (Y-мезона, образованного прелестным кварком и его антикварком) и Z0– частицы, обнаруженные в результате образования мюон-антимюонных пар с разной энергией.

Источник: © copyright CERN, в интересах коллаборации CMS

8 июля 2010 года итальянский физик Томмазо Дориго написал у себя в блоге, что, по слухам, Тэватрон нашел свидетельство легкого бозона Хиггса. Слух быстро распространился по всему Интернету и попал в новости. Его почти сразу же опроверг Фермилаб в своем твиттере, пренебрежительно отозвавшись о «сплетнях, которые распространяют блогеры, ищущие славы» [151] . Потом Дориго пытался оправдаться тем, что «лучше намеками на возможные открытия держать физику элементарных частиц в новостях, которые потом утихнут, чем делать громкие и четкие заявления раз в десять лет, когда действительно случается прорыв, и молчать все остальное время» [152] .

151

Твиттер Fermilab Today. Цит. по: Chivers T. // The Telegraph. 2010. July 13.

152

Dorigo T. Rumours About a Light Higgs // A Quantum Diaries Survivor. Запись в блоге от 8 июля 2010 года. www.science20.com/quantum_ diaries_survivor/

Правда или нет, но слухи были весьма показательны для соперничества между Фермилабом и ЦЕРНом, которое все усиливалось, и общего чувства, будто что-то вскоре может быть открыто. Ледерман уже раньше признавался, что возможное заявление ЦЕРНа о каком-то будущем открытии вызовет у него смешанные чувства: «Примерно как если бы теща упала в пропасть на твоем БМВ», – сказал он [153] .

Дориго в блоге ссылался на слухи о данных с уровнем статистической достоверности 3 сигмы [154] . Данные с уровнем достоверности 3 сигмы соответствуют 99,7-процентной уверенности – иными словами, вероятность, что данные ошибочны, составляет 0,3 процента. Хотя такой уровень достоверности кажется очень убедительным, все же, чтобы физики могли уверенно объявить об «открытии», им требуются 5 сигм, или уровень достоверности 99,9999 процента.

153

Leodermam L. // Chivers T. The Telegraph. 2010. July 13.

154

Очевидно, уровень достоверности самого слуха никто не измерял…

Считалось, что такие типы столкновений, которые могли привести к образованию и распаду бозона Хиггса, случаются очень редко и, чтобы собрать достаточно данных для 5 сигм, потребовалось бы очень много событий-кандидатов. Поэтому ключевое значение приобретала светимость [155] пучка частиц. Чем выше светимость, тем больше количество столкновений за определенный промежуток времени и тем больше количество потенциальных кандидатов. Фактически интегральная светимость (сумма светимости за некоторое время) непосредственно связана с количеством столкновений-кандидатов.

155

Светимость – параметр, означающий количество частиц в точке столкновения и, следовательно, количество потенциальных столкновений. Не все частицы в точке столкновения столкнутся на самом деле. Тем не менее светимость означает вероятность, что произойдет определенное количество столкновений.

Интегральная светимость измеряется в довольно непонятных единицах, которые называют обратными барнами. Интенсивность ядерных реакций характеризуется такой величиной, как эффективное поперечное сечение, выражаемое в квадратных сантиметрах. Можно считать, что сечение – это площадь гипотетического двухмерного «окна», в котором происходит реакция. Чем больше окно, тем более вероятна реакция. Чем более вероятна реакция, тем быстрее она произойдет. Измеренные сечения имеют размеры атомного порядка, обычно это некое число, умноженное на 10–24 см2. Сечение реакций с атомами урана оказалось таким большим, что один физик из Манхэттенского проекта саркастически заметил, что оно «размером с амбар» [156] . Так амбар, или барн, стал единицей измерения. Поперечное сечение, выраженное в виде некоего числа, умноженного на 10–24 см2, стали выражать этим числом в барнах. Пикобарн равен одной триллионной (10–12) барна, или 10–36 см2. Фемтобарн равен одной квадриллионной (10–15) барна, или 10–39 см2.

156

Амбар по-английски barn. (Примеч. пер.)

На заседании ЦЕРНа во французском городе Эвиан 8 декабря 2010 года Джанотти коротко обрисовала перспективы обнаружения бозона Хиггса и характер гонки между БАКом и Тэватроном. Исходя из простой статистики, даже при интегральной светимости до 10 обратных фемтобарнов (10 раз по 1015 обратных барнов, или 1040 см–2) до конца 2011 года, Тэватрон в поиске бозона Хиггса может добиться уверенности максимум в 3 сигмы в отдельных диапазонах энергии. Более мощный БАК в принципе способен генерировать данные с уровнем достоверности 3 сигмы в диапазоне 1–5 обратных фемтобарнов, в зависимости от массы хиггса.

Поделиться с друзьями: