Чтение онлайн

ЖАНРЫ

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:

Когда я беседовал с Джоан Хьюэтт о том, какие качества обеспечивают успех в науке, она все время повторяла одно слово: настойчивость. От отдельных ученых требуется настойчивость, чтобы доводить трудные задачи до конца, а общество в целом должно быть готово поддержать дорогостоящие долгосрочные проекты, призванные решать тяжелейшие научные задачи. В работе по расшифровке структуры реальности сливки уже сняты. Легкая жизнь закончилась.

Вопросы, с которыми мы сталкиваемся, нелегки, но если недавняя история чему-то учит, к победе нас должно привести сочетание упорной работы со случайными вспышками озарения. Построение Стандартной модели, может быть, и закончено, но перед нами по-прежнему стоит задача понять остальную часть реальности. И будь это не столь трудно, наша жизнь не была бы так увлекательна.

Приложение 1

Масса и спин

Первое, что мы всегда слышим о поле

Хиггса, – это то, что оно наделяет массой другие частицы. В этом Приложении мы собираемся несколько более подробно, чем в основном тексте, объяснить, что это значит. Все эти пояснения ни в коей мере не являются необходимыми, но кое-что могут прояснить.

Итак: зачем нам нужно поле, чья функция заключается в том, чтобы дать массу другим частицам? Почему частицы не могут получить массу без него?

Конечно, легко представить, что частицы становятся массивными, вообще не вводя поля Хиггса. Но частицы Стандартной модели – частицы особого типа, и из-за этого такое с ними произойти не может. Есть два различных набора частиц, которые получают массу с помощью поля Хиггса: W– и Z-бозоны – переносчики слабых взаимодействий, и электрически заряженные фермионы (электрон, мюон, тау-частица, и все кварки). Бозоны получают массу немного иначе, чем фермионы, но основной механизм в обоих случаях один и тот же: имеется симметрия, которая, как нам представляется, запрещает вообще иметь какую-любую массу, а поле Хиггса нарушает эту симметрию. Чтобы понять, как это происходит, мы должны поговорить о спине элементарных частиц.

Спин – одна из фундаментальных характеристик частиц в квантовой механике. Термин «квантовая механика», хотя сам по себе и не очень точный, связан с тем, что некоторые величины передаются только определенными, дискретными порциями. Например, энергию электрона, связаного с атомным ядром, можно менять только строго определенными порциями. То же самое верно и для величины, известной как «угловой момент» – он показывает, насколько быстро один объект вращается или двигается вокруг другого объекта. Правила квантовой механики говорят, что угловой момент квантуется, другими словами он может изменяться только на величину, пропорциональную некоторому фундаментальному, строго установленному значению. Минимальная неделимая единица углового момента задается постоянной Планка h – фундаментальной константой природы, деленной на 2?. Эта константа столь важна, что получила собственное название – «приведенная постоянная Планка» и причудливое обозначение h. Постоянную h Планк придумал, когда квантовая механика только нарождалась, но оказалось, что h используется гораздо чаще, так что мы именно ее теперь называем постоянной Планка. Численно h равна примерно 6,58 x 10– 16 электронвольт умноженных на секунду.

Представьте, что у вас есть волчок, вращением которого вы можете очень точно управлять. Вы вращаете его все медленнее и медленнее и измеряете его скорость настолько точно, насколько хотите. Вы обнаружите, что, когда вращение сильно замедлится, будут разрешены только дискретные скорости вращения – скорость вращения волчка будет скачком изменяться от одной к другой подобно тому, как секундная стрелка кварцевых часов перепрыгивает с одной секунды на следующую. В конце концов вы дойдете до самого медленного из возможных вращений, при котором полный момент количества движения волчка будет равен h. Причина, по которой вы не замечаете такого скачкообразного изменения скорости вращения олимпийских фигуристов, вращающихся на льду, в том, что минимальное вращение чрезвычайно медленно: чтобы завершить полный оборот, игрушечному волчку с угловым моментом h потребовалось бы время, в сто триллионов раз превышающее возраст Вселенной.

Вращающийся волчок имеет угловой момент, потому что атомы в волчке в буквальном смысле слова вращаются вокруг некоторой центральной оси. Одним из следствий квантовой механики является то, что отдельные частицы также могут иметь «спин», даже если они на самом деле не вращаются вокруг чего-либо. Мы приходим к такому заключению исходя из того, что полный угловой момент должен оставаться постоянным во времени, а мы видим процессы, в которых вращающиеся частицы при взаимодействии превращаются в частицы, которые вообще не вращаются. Поэтому мы делаем вывод, что угловой момент должен перейти в спин частицы. Говоря «спин», мы всегда имеем в виду внутреннее квантовомеханическое «вращение» элементарных частиц, а говоря «угловой момент», мы подразумеваем классическое явление вращения одного объекта вокруг другого (его еще называют «орбитальный» угловой момент).

Как

устроен спин

Есть несколько важнейших фактов, которые нужно знать о спине частицы. Каждый вид частиц имеет фиксированное значение спина, данное ему раз и навсегда, частицы никогда не начинают крутиться быстрее или медленнее. Если выражать спин в единицах ?, то спин каждого фотона во Вселенной равен единице, а спин каждого бозона Хиггса – нулю. Спин – неотъемлемая особенность частицы, он не изменяется в процессе ее существования (если только она не превращается в частицу другого вида).

В отличие от обычного орбитального углового момента наименьшая величина спина составляет половину ?, а не целое ?. Электрон, так же как и верхний кварк, имеет спин ?/2. (Для объяснений нужно глубже закопаться в квантовую теорию поля, поэтому просто посчитаем это причудой квантовой теории поля.)

Существует простая связь между спином частицы и ее природой, то есть бозон она или фермион. Каждый бозон имеет спин, который выражается целым числом: 0, 1, 2, и т. д. (здесь и далее мы выражаем спин в единицах ?). Каждый фермион имеет спин, выражаемый целым числом плюс половина: 1/2, 3/2,5/2, и т. д. Эта связь такая жесткая, что мы часто определяем бозоны как «частицы с целым спином», а фермионы – как «частицы с полуцелым спином». Это не совсем верно – по определению, которое мы дали раньше, бозоны могут «садиться» друг на друга, а фермионам необходимо пространство, и именно в этом истинное различие между этими двумя классами частиц. А знаменитая теорема в физике – «теорема о связи спина со статистикой» (теорема Паули) уже доказывает, что частицы, способные жить друг на друге, должны иметь целочисленные спины, а частицы, требующие места в пространстве, имеют полуцелые спины. По крайней мере это так в четырехмерном пространстве-времени, но мы здесь ни о чем другом говорить не будем.

Все частицы Стандартной модели обладают весьма определенными спинами. Спин всех известных элементарных фермионов – кварков, заряженных лептонов и нейтрино – равен 1/2. Гравитино – гипотетический суперсимметричный партнер гравитона – имел бы спин 3/2, но гравитино пока не нашли. Сам гравитон имеет спин 2, и он в этом отношении не похож на все остальные элементарные частицы. Другие калибровочные бозоны – фотон, глюоны, а также W и Z – все имеют спин 1. (Разница между гравитоном и другими бозонами – переносчиками сил – в конечном счете определяется тем, что симметрия, лежащая в основе гравитации, – симметрия самого пространства – времени, в то время как другие силы живут в пространстве – времени.) Бозон Хиггса, который стоит в стороне от всех остальных, имеет спин 0. Частицы с нулевым спином называются скалярами, а поля, из колебаний которых они возникают, называют скалярными полями.

Важно различать «спин частиц» и «величину спина, измеряемую относительно некоторой оси (проекцию)». Предположим, что вектор углового момента Земли, вращающейся вокруг своей оси, направлен от Южного полюса к Северному и имеет некоторую (большую) величину. Мы можем спросить, каков этот угловой момент по отношению к оси, направленной в противоположном направлении – с севера на юг. Ответом была бы та же величина, но взятая со знаком минус. Сам угловой момент не изменился, мы просто измерили его по отношению к другой оси. Если мы смотрим на исходную ось сверху, то положительный спин означает, что мы видим объект, вращающийся против часовой стрелки, а отрицательный – что объект вращается по часовой стрелке. Земля вращается против часовой стрелки с точки зрения того, кто смотрит вниз с Северного полюса, поэтому она имеет положительный спин. (Это известное «правило правой руки» – если вы согнете пальцы правой руки в направлении вращения – то есть как бы охватите цилиндр, – то большой оттопыренный палец укажет направление, вдоль которого спин положителен).

Разрешенные значения при измерении спина частицы относительно некоторой оси. Безмассовым частицам разрешены только значения, соответствующие закрашенным кружкам, в то время как массивные частицы могут принимать значения, соответствующие как закрашенным, так и незакрашенным кружкам.

Можно даже рассмотреть измерение углового момента по отношению к перпендикулярной оси – скажем, оси, направленной по диаметру экватора. По отношению к этому направлению Земля вообще не «вращается» – Северный и Южный полюса остаются в одном и том же положении по отношению к воображаемой оси, направленной вдоль диаметра экватора. Поэтому мы сказали бы, что спин, измеренный относительно этой оси, равен нулю.

Поделиться с друзьями: