Чтение онлайн

ЖАНРЫ

Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла

Новиков Игорь Дмитриевич

Шрифт:

Стремление объяснить происхождение всех химических элементов их синтезом в начале расширения было в 40-е годы естественным. Дело в том, что тогда ошибочно оценивали время, протекшее с начала расширения Вселенной, всего в 2—4 миллиарда лет. Это было связано с завышенным значением постоянной Хаббла. Сравнивая возраст Вселенной в 2—4 миллиарда лет с оценкой возраста Земли — около 4—6 миллиардов лет, приходилось, предполагать, что Земля, Солнце и звезды образовались из первичного вещества с уже готовым химическим составом. Считалось, что этот состав не изменился сколь-нибудь существенно, так как синтез элементов в звездах — процесс медленный и для его осуществления перед образованием Земли, Солнца и других тел уже не было времени.

Последующий пересмотр шкалы внегалактических расстояний привел к пересмотру возраста Вселенной.

Теория эволюции звезд успешно объясняет происхождение всех тяжелых элементов (тяжелее гелия) их нуклеосинтезом в звездах. Необходимость объяснения происхождения всех элементов, включая и тяжелые, на ранней стадии расширения Вселенной, отпала. Однако, суть гипотезы горячей Вселенной оказалась верной.

С другой стороны, исследования показали, что содержание гелия в звездах и межзвездном газе составляет около 30% по массе. Это гораздо больше, чем можно объяснить ядерными реакциями в звездах. Значит гелий, в отличие от тяжелых элементов, должен синтезироваться в начале расширения Вселенной. Основным же элементом Вселенной, является водород. Его доля по массе составляет примерно 70%. На долю остальных элементов приходится совсем немного.

Основная идея теории Гамова состоит в том, что высокая температура вещества препятствует превращению всего вещества в гелий. В момент 0,1 с после начала расширения температура была около 30 миллиардов Кельвинов. В горячем веществе имеется много фотонов большой энергии. Плотность и энергия фотонов столь велики, что происходит взаимодействие света со светом, приводящее к рождению электронно-позитронных пар. Аннигиляция пар может в свою очередь приводить к рождению фотонов, а также к возникновению пар нейтрино и антинейтрино. В этом «бурлящем котле» находится обычное вещество. При очень высоких температурах не могут существовать сложные атомные ядра. Они были бы моментально разбиты окружающими энергичными частицами. Поэтому тяжелые частицы вещества существуют в виде нейтронов и протонов. Взаимодействия с энергичными частицами «котла» заставляют нейтроны и протоны быстро превращаться друг в друга. Однако, реакции соединения нейтронов с протонами не идут, так как возникающее при этом ядро дейтерия тут же разбивается частицами большой энергии. Так, из-за большой температуры в самом начале обрывается цепочка, ведущая к образованию гелия.

Только когда Вселенная, расширяясь, охлаждается до температуры ниже миллиарда Кельвинов, некоторое количество возникающего дейтерия уже сохраняется и приводит к синтезу гелия. Расчеты показывают, что к этому моменту доля нейтронов в веществе составляет около 15% по массе. Эти нейтроны, соединяясь с таким же количеством протонов, образуют около 30% гелия. Остальные тяжелые -частицы остались в виде протонов — ядер атомов водорода. Ядерные реакции заканчиваются по прошествии первых пяти минут после начала расширения Вселенной.

Так теория предсказывает возникновение 30% гелия и 70% водорода, как основных химических элементов природы.

На гипотезе Гамова анализ разных вариантов начала космологического расширения не закончился. В начале 60-х годов остроумная попытка снова вернуться к холодному варианту была предпринята Я. Б. Зельдовичем. Он предположил, что первоначальное холодное вещество состояло из протонов, электронов и нейтрино. Как показал Я. Б. Зельдович, такая смесь при расширении превращается в чисто водородную плазму. Гелий и другие химические элементы, согласно этой гипотезе, синтезировались позже, когда образовались звезды. Заметим, что данные об обилии гелия в дозвездном веществе были в шестидесятые годы еще очень неопределенными.

Если бы теории ранней Вселенной можно было проверять только по распространенности химических элементов, то выяснить истину было бы сложно. Ведь не так-то просто разобраться сколько элементов, и в частности гелия, синтезировано в звездах, а сколько в ранней Вселенной. По-видимому, еще долго шли бы споры.

Однако, есть другой способ проверки. Теория Гамова предсказывает существование в сегодняшней Вселенной реликтового электромагнитного излучения [3] . Оно должно остаться от эпохи, когда вещество в прошлом было плотным и горячим. В ходе расширения это излучение остыло и сегодня должно иметь температуру 1—30 Кельвинов.

3

Это

название было дано излучению советским астрофизиком И. С. Шкловским. Другое его название - космическое или фоновое микроволновое излучение.

 Электромагнитное излучение со столь малой температурой является радиоволнами сантиметрового и миллиметрового диапазона.

Предсказание реликтового излучения в первых работах Г. Гамова, Р. Альфера, Р. Германа казалось должно было обратить на себя внимание астрофизике а те в свою очередь должны заинтересовать радиоастрономов-наблюдателей с тем, чтобы его попытаться обнаружить.

Но ничего подобного не произошло. Историки науки до сих пор гадают, почему долгие годы никто не пытался сознательно искать реликтовое излучение горячей Вселенной. Прежде чем обращаться к этим догадка напомним цепь фактических событий, приведших самому открытию.

В 1960 г. в США была построена антенна для приема отраженных радиосигналов от спутника «Эхо». К 1963 для работы со спутником эта антенна уже была не нужна и два радиоинженера — Р. Вилсон и А. Пензиас лаборатории компании «Белл» решили использовать для радиоастрономических наблюдений. Антенна представляла собой 20-футовый рупорный отражатель. Вместе с новейшим приемным устройством этот радиотелескоп был в то время самым чувствительным инструментом в мире для измерения радиоволн, приходящих из космоса с широких площадок на небе. Он предназначался в первую очередь для измерения радиоизлучения межзвездной среды нашей Галактики. Наблюдения велись на длине волны 7,35 см. Пензиас и Вилсон не собирались искать реликтовое излучение, да и о самой теории горячей Вселенной они тогда ничего не знали.

Для точного измерения радиоизлучения Галактик необходимо было учесть все возможные помехи. Такие помехи вызывает рождение радиоволн в земной атмосфере, радиоизлучает также и поверхность Земли, помехи возникают в антенне, электрических цепях и приемниках.

Все источники помех были тщательно проанализированы и учтены. Тем не менее Пензиас и Вилсон с удивлением отмечали, что куда бы их антенна ни была направлена на небе, она воспринимала какое-то радиоизлучение постоянной интенсивности. Это не могло быт излучением нашей Галактики, ибо в этом случае его интенсивность менялась бы в зависимости от того, смотрели антенна вдоль плоскости Млечного Пути или поперек. Кроме того, ближайшие к нам галактики, похожие на нашу, тоже излучали бы на длине волны 7,35 см. Но такого их излучения обнаружено не было. Оставалось две возможности: либо были какие-то неучтенные помехи, либо излучение приходит откуда-то из космоса. Подозрения пали на возможные помехи в антенне. Однако, всесторонняя проверка показала, что это не так. Значит, излучение приходит из космоса, причем со всех сторон с одинаковой интенсивностью.

Дальше события, приведшие к разгадке проблемы, связаны со случайностями. Во время беседы со своим приятелем Б. Бёрке о совершенно других вопросах Пензиас случайно упомянул о загадочном излучении, принимаемом их антенной. Тот вспомнил, что он слышал о докладе П. Пиблса, работавшего под руководством известного физика Р. Дикке. В этом докладе Пиблс якобы упоминал об остаточном излучении ранней горячей Вселенной, которое сегодня должно иметь температуру около 10 Кельвинов. Пензиас позвонил Дикке и обе группы исследователей встретились. Р. Дикке и его коллегам П. Пиблсу, П. Роллу и Д. Уилкинсону стало ясно, что А. Пензиас и Р. Вилсон обнаружили реликтовое излучение горячей Вселенной. В это время группа Дикке, работавшая в Принстоне, собиралась сама готовить аппаратуру для подобных измерений на длине волны 3 см, но не успела начать наблюдения, А. Пензиас и Р. Вилсон уже сделали свое открытие.

Летом 1965 г. в «Астрофизикл джорнэл» были опубликованы работы Пензиаса и Вилсона об открытии реликтового излучения и Дикке с коллегами — об его объяснении теорией горячей Вселенной. Первые наблюдения показали, что температура реликтового излучения составляет около 3 Кельвинов.

В последующие годы многочисленные измерения были проведены на различных длинах волн от десятков сантиметров до доли миллиметра.

Наблюдения показали, что спектр реликтового излучения соответствует формуле Планка, как это и должно быть для излучения с определенной температурой. Подтвердилось, что эта температура примерно равна 3 Кельвинам.

Поделиться с друзьями: