Чтение онлайн

ЖАНРЫ

Шрифт:

В XVI веке Коперник вывел астрономию из «джунглей» Птолемеевой системы, данные которой не соответствовали множеству наблюдаемых фактов. В XX веке хватило одного «необъяснимого факта» в небесной механике, чтобы ради его понимания понадобилось перестроить картину мира. Конечно, дело было не только в нем, но…

Г. Бонди — физик, а не астроном, может быть, поэтому ему эта история представляется незначительной, а на первый план выходят общие принципы единства физики. Что же, они, принципы, это место заслуживают. Но конкретные факты тоже никак нельзя недооценивать.

Одно к другому — и появилась общая теория относительности, она же теория гравитации. Именно она определяет сегодняшнее состояние проблемы гравитации. Ее справедливо называют революционной,

однако не будем забывать и о том, что новое учение о гравитации прочно стояло на фундаменте классической физики, корни этого учения глубоко уходят в историческую «подпочву науки».

Сегодня

Законы должны быть одинаковы всюду

«Нам уже ясно, что Земля на самом деле движется, хотя это нам не кажется, ибо мы ощущаем движение лишь при сравнении с неподвижной точкой. Если бы кто-нибудь не знал, что вода течет, не видел бы берегов и был бы на корабле посреди вод, как мог бы он попять, что корабль движется? На этом же основании, если кто-либо находится на Земле, на Солнце или на какой-нибудь другой планете, ему всегда будет казаться, что он на неподвижном центре и что все остальные вещи движутся».

Так писал в первой половине XV века Николай Кузанский, кардинал католической церкви и крупный ученый. Это, пожалуй, первое в мире четкое изложение принципа относительности движения.

По-латыни «принципиум» — основа, первоначало. Название великой книги Ньютона переводится как «Математические начала натуральной философии», а сама книга написана на латыни, и словом «начала» перелагают на русский слово «Principia». Философский словарь определяет: «В логическом смысле Принцип есть центральное понятие, основание системы, представляющее обобщение и распространение какого-либо положения на все явления той области, из которой данный принцип абстрагирован».

Словом, физики берут конкретный факт, обнаруженный в конкретных опытах, и принимают (пли, если хотите, провозглашают), что данный факт должен иметь место в любых ситуациях, аналогичных тем, где мы с ним уже встречались. Строго говоря, принцип в науке — предположение, поэтому его продолжают проверять.

Мы с вами уже встретились в этой книге с принципом относительности, встретимся с принципом, объявляющим скорость света высшей из возможных скоростей, и другими. Итак, в науке слову «принцип» придается несколько иное значение, чем в обыденной жизни. Зато отношение к принципам и тут и там одинаковое: новые принципы становятся общепринятыми с большим трудом и очень редко; и, как в жизни, их не меняют и от них не отрекаются, разве что в случае полного краха… в жизни— личности или общества, в науке — теории, а то и целой научной дисциплины.

Первым человеком, убедительно обосновавшим принцип относительности, стал Галилео Галилей. Современники ждали от него ответа на коронный вопрос противников Коперника: если Земля движется вокруг Солнца, вращаясь еще притом вокруг собственной оси, то почему это не сказывается, например, на движении падающего с башни камня — ведь «за то время, пока камень находится в воздухе, опускаясь к центру Земли, сама Земля, двигаясь с великой скоростью к востоку и неся на себе основание башни, по необходимости должна была бы оставить камень на таком же расстоянии позади себя, на какое за то же самое время ее уносит кружение…»

Галилей в «Послании к Франческо Инголи», противнику коперниканства, дал подробнейший ответ на этот и подобные вопросы. Вот одна из самых ярких и важных для понимания принципа относительности Галилея страниц: «В большой каюте под палубой какого-нибудь крупного корабля запритесь с кем-либо из ваших друзей; устройте так, чтобы в ней были мухи, бабочки и другие летающие насекомые; возьмите также большой сосуд повыше, из которого вода падала бы по каплям в другой нижний сосуд с узкой шейкой; и пока корабль стоит неподвижно, наблюдайте внимательно, как эти насекомые будут

с одинаковой скоростью летать по каюте в любом направлении, вы увидите, как рыбки начнут двигаться безразлично в направлении какой угодно части края сосуда; все капли, падая, будут попадать в сосуд, поставленный снизу… Когда вы хорошо заметите себе все эти явления, дайте движение кораблю и притом с какой угодно скоростью; тогда (если только движение его будет равномерным, а не колеблющимся туда и сюда) вы не заметите ни малейшей разницы во всем, что было описано, и ни по одному из этих явлений, ни по чему-либо, что станет происходить с вами самими, вы не сможете удостовериться, движется ли корабль или стоит неподвижно… Нам никогда не удается узнать по внутренним предметам, что с ним происходит; как же удастся узнать это у Земли, которая всегда находилась для нас в одном и том же состоянии?»

Все это и многое другое Галилей говорил для того, чтобы подвести своих современников к принципу, который на современном научном языке гласит: все законы механики справедливы в системах, которые движутся относительно друг друга прямолинейно и с постоянной скоростью.

Термин «относительность» стал одним из самых популярных и, конечно, благодаря широко известной ныне теории относительности. И все-таки перед тем как сесть за эту главу, автор провел опрос своих знакомых, чтобы выяснить, что, по их мнению, представляет собой принцип относительности. К специалистам-физикам он не обращался, решив, что они знают это «по положению»; не спрашивал он и самых заядлых гуманитариев, поскольку справедливо полагал, что они не знают этого — тоже «по положению». Среди опрошенных оказались инженеры самых разных специальностей, химики, врачи, архитекторы, журналисты, пишущие о науке. Некоторые из ответов отдаленно приближались к истине, некоторые не имели к ней никакого отношения, многие смельчаки сознались, что представления не имеют о том, о чем столько слышали.

Потому и появился в книге этот рассказ о принципе относительности, или, по-иному говоря, о трех принципах относительности: галилеевском, частном принципе относительности Эйнштейна и общем принципе относительности его же.

Обратим внимание: популярная разговорная формула, гласящая, что все в мире относительно, не имеет к данному принципу даже косвенного отношения. Он-то ведь провозглашает общность, а не различие законов для разных систем отсчета — при условии, что все они движутся с постоянной скоростью, как галилеевские корабли.

Все, что происходит в мире, должно при исследовании физиками иметь четко обозначенный адрес. Когда мы надписываем на конверте адрес приятеля, то пользуемся системой отсчета, связанной с планетой Земля. Порою вместо термина «система отсчета» применяют термин «система координат». Иногда говорят, что между системой отсчета и системой координат примерно та же разница, что между городом и его планом, между страной и ее картой, указывая при этом, что как карта может изображать несуществующую страну, так система координат может иметь чисто расчетный смысл. Математики работают, например, с многомерными системами координат, между тем наш реальный мир знает только три пространственных измерения. Система же отсчета всегда берет за основу какие-то реальные тела, так сказать, опорные точки. Впрочем, для этой книги такие подробности не имеют существенного значения.

(Помню, как студентом я присутствовал при закладке раскопа в археологической экспедиции. Раньше, чем первая лопата вонзилась в тугой дерн, зеленую надгробную пелену над домами и улицами древнего города, мы под руководством специалиста колдовали с теодолитами, намечая опорные точки для сетки координат плана будущего раскопа. В эти точки были вбиты аккуратные колышки. А затем каждый участок раскопок привязывался к этим колышкам, обозначался с учетом точного расстояния от них. С этого момента все, что выбрасывали лопаты, все, что осторожно зачищалось кистью и ножом, — все это получало четкую прописку в пространстве: квадрат такой-то, на глубине такой-то.

Поделиться с друзьями: