Чем мир держится?
Шрифт:
Если бы температура в центре звезды поднималась быстро, разогретое вещество набралось бы силы, чтобы побороться с тяготением, чтобы остановить сжатие. Но большая часть тепла расходуется все на ту же «обратную термоядерную реакцию».
Сжатие продолжается, пока не превращается в сжатие взрывное, когда вещество центральной области звезды устремляется к центру ее со скоростью, достигающей на определенных этапах многих километров в секунду. Естественно, что на место уже обрушившихся более близких к центру слоев рушатся слои, более близкие к поверхности. Катастрофа развивается!
Нашему Солнцу взрывной коллапс не угрожает, Слишком для этого мала масса светила. Вот если бы оно было больше хотя бы в один и два десятых раза… Впрочем, в Галактике множество звезд, больших, чем Солнце. Гравитация в конце концов приведет их к сжатию, и они превратятся в нейтронные звезды.
Но и нейтронная звезда еще не дает нам предела плотности,
Немецкий астроном Карл Шварцшильд в первые же месяцы после появления теории относительности нашел на основе ее уравнений, что если достаточно плотная звезда сожмется до определенных размеров, до своего так называемого гравитационного радиуса (в каждом случае зависящего от ее массы), то никакие сигналы с этой звезды уже не смогут выйти наружу. Слишком сильно будет искривлено окружающее ее пространство-время.
Черные дыры долю оставались, однако, да периферии космологии и астрофизики. Но с шестидесятых годов положение изменилось. Число посвященных им работ растет чуть ли не с той же быстротой, с какой они сами — в теории — схлопываются.
Какой реально должна быть черкая дыра, первыми показали советские физики А. Г. Дорошкевич, Я. Б. Зельдович и И. Д. Новиков в 1965 году.
Вращающаяся черная дыра становится центром вихря, засасывающего по воронкообразным орбитам частицы и газ. Она имеет четко очерченный горизонт, через который вещество и свет могут проходить только в одну сторону — внутрь, но не наружу [17] ; окружность ее экватора должна быть равна девятнадцати километрам, помноженным на число масс Солнца, которым соответствует масса черной дыры. «Типичная» черная дыра имеет в «охвате» от шестидесяти до тысячи километров, и масса ее может содержать от трех до пятидесяти солнечных масс.
17
В последние годы в это положение пришлось внести поправку, речь о которой пойдет в свое время.
Кроме «типичных» черных дыр, могут существовать еще и дыры сверхгигантские. Ими, возможно, становятся центры галактик, в ядрах которых в прошлом происходили мощные взрывы. Если такая дыра есть и в центре нашей Галактики, то ее масса должна быть в сто миллионов раз больше массы нашего Солнца.
Наконец, теория учитывает возможность существования в нашем мире и минидыр массой всего лишь в несколько сот масс самой большой египетской пирамиды— пирамиды Хеопса. По космическим масштабам это и вправду минимасса, и вся она сосредоточена в объеме, который в нормальных условиях занимает одна (одна!) элементарная частица. Такие минидыры должны в соответствии с законами квантовой механики понемногу «испаряться». Один из «фокусов» квантовой механики состоит в том, что в определенных условиях элементарные частицы способны делать «скачки» сквозь как будто непреодолимые для них энергетические барьеры. Здесь не место вдаваться в подробности, заменим их аналогией. Сколько бы раз автомобиль ни подъезжал к глухой каменной степе, преодолеть ее он не в состоянии: он может либо остановиться перед ней, либо разбиться вдребезги. А вот подчиняйся он законам квантовой механики, в одном случае из очень многих автомобиль очутился бы «вдруг» позади стены, не повредив ее. Вот так какая-то часть вещества черной дыры все-таки выскакивает за ту самую ее поверхность, где даже свет вынужден останавливаться и обрывать свою дорогу вовне. Чем больше дыра, тем меньшая доля ее частиц прорывается наружу, но «испарение», предсказанное С. Хоукингом, идет и с поверхности больших черных дыр. Маленькие же дыры испаряются относительно быстро, и завершается этот процесс «таяния» бурно — взрывом. По астрофизическим масштабам взрывом крошечным — всего-то в области пространства величиной с протон освобождается столько же энергии, что и при взрыве одного миллиона мегатонных водородных бомб.
Именно из-за наклонности к взрыву при уменьшении массы минимальная масса черных дыр сегодня — десять в пятнадцатой степени граммов. Минидыры наших дней (если они есть) — реликты, ископаемые, оставшиеся от первых
секунд рождения Метагалактики А вот сверхмассивные дыры — памятники тех более близких к нам миллиардолетий, когда складывались уже галактики.Между прочим, на черную дыру можно и наткнуться. Конечно, встреча с таким космическим телом, даже миниатюрным, обернулась бы для Земли катастрофой. Но, возможно, такие катастрофы, к счастью, не очень значительных масштабов, уже случались в земной истории. Одна из сотен гипотез, связанных со знаменитым Тунгусским метеоритом, объявляет его минидырой. Впрочем, гипотезу эту отнюдь нельзя назвать общепризнанной.
В отличие от случая с нейтронными звездами черные дыры пока не отождествлены достаточно точно ни с какими конкретными объектами Вселенной, хотя их существование уже подозревают в нескольких пунктах. Строго говоря, они только предсказаны — предсказаны на основе уравнений общей теории относительности. Пока что все ее предсказания, которые можно было проверить, оказывались верными. Но мы-то знаем ведь, что теория должна проверяться, пока не будет опровергнута. Станет ли проблема черной дыры новым триумфом теории?
…Построение гипотез гораздо меньше зависит от логического мышления, чем думает большинство людей. Ни одна гипотеза не может быть создана путем только логического рассуждения, потому что она… основывается на недостаточном количестве данных; в противном случае это уже не гипотеза, а констатация факта. Гипотеза же тем изобретательней, чем больше она вынуждена опираться на воображение ввиду отсутствия фактов. Само собой разумеется, что оценка результатов может производиться только разумом.
Изложенное выглядит интересно, неожиданно, парадоксально. Однако кого удивишь парадоксами в современной физике? Парадокс — то, что противоречит общепринятому взгляду на вещи. Ну, а когда, строго говоря, «общепринятый» взгляд по каждому поводу принят далеко не всеми?.. Сказал же Р. Фейнман, что каждый физик знает шесть-семь теорий, объясняющих одни и те же известные факты.
С одной стороны, гравитационный коллапс представляется нормальным явлением в жизни каждой достаточно массивной звезды. Теоретические расчеты убедили большинство физиков в том, что переход пережившей коллапс звезды в черную дыру в ряде случаев неизбежен. Надо, однако, отметить, что ряд исследователей (у нас в стране — доктор физико-математических наук М. Е. Герценштейн и некоторые другие ученые, за рубежам — Р. Джилмен, Е. Г. Геррисон, В. Израэл) доказывает, что гравитационный коллапс на его последней стадии обратим, звезда, сжавшись до размеров сферы Шварцшильда, не застывает в этом положении, а снова расширяется, чтобы опять сжаться. Гравитационный коллапс, по Герценштейну и Джилмену, оборачивается не безвозвратной «смертью» звезды с обращением ее в гравитационный гроб, а пульсирующими ее биениями, На месте черной дыры в этой гипотезе возникает пульсар. С другой стороны, есть много оснований ожидать, что где-то впереди наша Метагалактика в целом должна пережить гравитационный коллапс, Положим, что в Метагалактике срабатывают те же задержки (противодействие гравитации некоторых других сил) коллапса, что и в галактике. Однако и тут и там это именно задержки — процесс не остановится, а только станет (становится) медленнее. А в масштабах Вселенной миллиарды и даже десятки миллиардов лет отнюдь не выглядят бесконечностью.
А вот еще одна система аргументов в пользу неизбежности перехода Метагалактики от расширения к сжатию. Рассказ о ней стоит начать с литературного примера, точнее — антипримера.
У советского геолога Обручева есть научно-фантастический роман «Плутония». Его герои сквозь отверстие вблизи полюса проникают внутрь нашей планеты, где, оказывается, находится обширное пустое пространство, освещаемое, собственным «внутриземным солнцем».
Рассмотрим эту ситуацию с гравитационной точки зрения.
Существуй на самом деле такая внутриземная полость, имейся на самом деле путь в нее — вблизи ли полюса или у экватора, — путешествие туда все равно было бы невозможно, как и жизнь в этой полости. Дело в том, что по одному из следствий закона всемирного тяготения Ньютона в пустой полости внутри сферической массивной оболочки гравитационная сила отсутствует, Попав в огромную полость внутри Земли, путешественники всплыли бы в воздух, как космонавты в спутнике, вышедшем на орбиту. Только в спутнике невесомость связана с тем, что он представляет собой свободно падающее тело, а в Плутонии притяжение со стороны ближайшей части земной оболочки уравновешивается притяжением остальных ее частей, в которых ведь вещества намного больше. Впрочем, дело обстояло бы даже хуже. В такой ситуации для путешественников сыграло бы роковую роль тяготение самого Плутона — светила подземной страны. В условиях равновесия сил притяжения со стороны Земли (Земли как «оболочки») Плутон должен был притянуть к себе отважных исследователей.