Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:
На рисунке показана последовательность из трех статичных звезд, имитирующая процесс схлопывания, который готовились проанализировать Оппенгеймер и Снайдер. Все звезды имеют одинаковую массу, но разный размер. Длина окружности первой в четыре раза больше критической длины окружности, при которой гравитация звезды становится настолько сильной, что образует черную дыру. Вторая имеет в два раза больший размер, а размер третьей в точности соответствует критической окружности. Эти вложенные диаграммы показывают, что чем ближе звезда к критическому размеру, тем сильнее кривизна окружающего ее пространства. Однако эта кривизна не становится бесконечной. Чашеподобная геометрия остается везде гладкой, без резких складок и перегибов, даже когда звезда имеет критический размер, т. е. кривизна пространства-времени не бесконечна. Соответственно, поскольку приливные гравитационные силы (тип сил, которые растягивают вас от головы к ногам и которые вызывают приливы на Земле) являются физическим проявлением кривизны
В главе 3 мы также обсуждали судьбу света, излучаемого с поверхности статичных звезд. Поскольку вблизи поверхности время бежит медленнее, чем вдали от нее (гравитационное замедление времени), испущенные с поверхности и принимаемые на удалении световые волны будут иметь увеличенный период колебаний и, соответственно, большую длину волны и более красный цвет. Как только свет выбирается из мощного гравитационного поля, его длина волны оказывается сдвинутой к красному краю спектра (гравитационное красное смещение). Если статичная звезда имеет размер в четыре раза больший критического, длина волны увеличивается на 15 % (световой фотон в верхнем правом углу рисунка); если же звезда имеет размер, превышающий критический в два раза, красный сдвиг составляет 41 % (справа в середине); если длина окружности звезды точно равна критической, длина волны света неограниченно смещается вправо, что означает, что у него вообще не остается энергии, и он прекращает свое существование.
Рассмотрев в своих предварительных расчетах такую последовательность статичных звезд, Оппенгеймер и Снайдер пришли к такому выводу: во-первых, схлопывающаяся звезда, так же как и рассмотренные статичные, вероятно, порождает большое искривление пространства-времени вблизи поверхности при размерах, близких к критическим; но это искривление не бесконечно и потому не бесконечны и приливные гравитационные силы. Во-вторых, когда звезда схлопывается, свет с ее поверхности оказывается все более смещенным в красную область, и как только она достигает критического размера, красное смещение становится бесконечным, делая звезду совершенно невидимой. По словам Оппенгеймера, звезда как бы «сама обрывает» визуальную связь с нашей Вселенной.
Существует ли какой-либо способ, — спросили себя Оппенгеймер и Снайдер, — чтобы внутренние свойства звезды, которые игнорируются в таком быстром расчете, могли спасти звезду от «самоотсечения»? Например, не могло ли схлопывание протекать столь медленно, что критический размер никогда бы не достигался, даже спустя неограниченное время?
Оппенгеймер и Снайдер хотели бы ответить на все перечисленные вопросы, тщательно рассчитав реальное схлопывание звезды, как это показано в левой части рис. 6.3. Однако подобно Земле, любая реальная звезда хоть немного, но вращается. Благодаря такому вращению, центробежные силы, так же как и на Земле, слегка выпячивают экваториальную область звезды, поэтому она не может быть совершенно сферичной. Схлопываясь, звезда должна вращаться все быстрее (как фигурист, прижимающий к себе руки), и это все ускоряющееся вращение вызывает рост центробежных сил внутри звезды, которые делают все более заметным вздутие на экваторе — существенно заметнее, возможно даже настолько, что оно прерывает схлопывание, когда центробежные силы полностью уравновесят гравитационное притяжение. Каждая реальная звезда имеет высокие давление и плотность в центре и меньшие — во внешних слоях; при схлопывании же внутри, то там то здесь, будут формироваться комки с более высокой плотностью (подобно вкраплениям изюма в сладкой булочке). Более того, газообразное вещество звезды при схлопывании порождает ударные волны — аналог разбивающихся о берег океанских волн, и эти удары могут выбрасывать вещество, а значит, и массу с поверхности звезды, так же как волны выбрасывают в воздух водяные брызги. Наконец, истощает звезду, унося массу, и излучение (электромагнитные и гравитационные волны, нейтрино и т. д.)
6.3. Слева: Физические явления в реалистичной модели звезды. Справа: Идеализации, принятые Оппенгеймером и Снайдером при вычислении схлопывания
Оппенгеймеру и Снайдеру хотелось бы учесть в своих расчетах все эти эффекты, но в 1930 г. это было непосильной задачей, лежащей за пределами возможностей любого физика или вычислительной машины. Ее решение станет возможным лишь в 1980-е годы с появлением суперкомпьютеров. Таким образом, чтобы добиться хоть какого-то прогресса, необходимо было построить идеализированную модель схлопывающейся звезды и затем рассчитать предсказания, даваемые законами физики, для этой модели.
Подобные идеализации были сильной стороной Оппенгеймера: сталкиваясь с ужасающе сложными ситуациями, подобными этой, он мог почти безошибочно определить, какие явления имеют решающее значение, а какие второстепенны.
Что касается схлопывающихся звезд, здесь, как верил Оппенгеймер, среди других особенностей, определяющее значение имела гравитация в том виде, как она описана в общей теории относительности Эйнштейна. Она и только она не могла быть опущена при планировании предстоящего расчета. В противоположность этому, вращением звезд
и несферичностью их формы можно было пренебречь (они способны играть заметную роль лишь для некоторых схлопывающихся звезд, а для слабовращающихся, вероятно, сильного эффекта не дают). На самом деле, Оппенгеймер не мог это доказать математически точно, но интуитивно это казалось очевидным; так оно и оказалось в действительности. Аналогичным образом, интуиция подсказывала, что утечка через излучение — малосущественная деталь, как, впрочем, и ударные волны, и комки плотности. Более того, поскольку (как показали Волков и Оппенгеймер) гравитация могла пересилить любое давление в массивной мертвой звезде, казалось безопасным допустить (хотя, конечно, это не так), что в схлопывающейся звезде как будто бы нет внутреннего давления ни теплового, ни давления вырожденного (клаустрофобного) движения электронов и нейтронов, ни давления, обусловленного ядерными силами. Настоящая звезда с реальным давлением может схлопываться не так, как идеальная звезда без давления, но отличия в схлопывании должны быть умеренными, не слишком значительными.Именно поэтому Оппенгеймер предложил Снайдеру для расчетов идеализированную модель: основываясь на точных законах общей теории относительности, рассчитать схлопывание идеально сферичной, невращающейся и неизлучающей звезды с однородной плотностью (одинаковой в середине и на поверхности) и при полном отсутствии внутреннего давления (см. рис. 6.3).
Даже со всеми этими упрощениями (вызывавшими скептицизм у других физиков на протяжении последующих 30 лет) расчет оставался чрезвычайно сложным. К счастью, в Пасадене мог помочь Р. Толман. Часто обращаясь к нему за советом по математике и апеллируя к физической интуиции Оппенгеймера, Снайдер получил систему уравнений, полностью описывающую процесс схлопывания, и, проявив большую изобретательность, решил ее. Теперь в его распоряжении было подробное описание процесса схлопывания, выраженное в формулах! Анализируя эти формулы с разных сторон, физики могут по своему желанию увидеть любые аспекты схлопывания — как это выглядит вне звезды, внутри нее, на ее поверхности.
* * *
Особенно интригующим оказался вид на схлопывающуюся звезду с покоящейся внешней системы отсчета, т. е. то, как ее видит наблюдатель, находящийся снаружи на некотором фиксированном расстоянии, а не движущийся к центру вместе со сжимающимся веществом звезды. Звезда, наблюдаемая из покоящейся внешней системы отсчета, начинает сжатие именно так, как этого и можно было бы ожидать. Подобно камню, брошенному с крыши, поверхность звезды падает вниз (сжимается к центру) сначала медленно, а затем все быстрее. Если бы законы тяготения Ньютона были верны, ускорение схлопывания неуклонно продолжалось бы до тех пор, пока звезда с высокой скоростью, при отсутствии какого-либо внутреннего давления, не свернулась бы в точку. Но согласно релятивистским формулам Оппенгеймера и Снайдера, все происходит не так. Вместо этого при приближении звезды к критическому размеру ее сжатие чрезвычайно замедляется. Чем меньше становится звезда, тем медленнее она схлопывается, пока не становится совершенно замороженной при точно критической длине окружности. Вне зависимости от того, как долго мы будем ждать, находясь снаружи звезды (т. е. в состоянии покоя во внешней статичной системе отсчета), мы никогда не сможем увидеть, как звезда схлопнется, пройдя критический размер. Таков был недвусмысленный вывод из формул Оппенгеймера и Снайдера.
Обусловлено ли замораживание сжатия некоей неожиданной силой внутри звезды, следующей из общей теории относительности? Нет, это не так, — догадались Оппенгеймер и Снайдер. Скорее всего, оно объясняется гравитационной временной задержкой (замедлением течения времени) вблизи критического размера. Время на поверхности звезды, со стороны покоящегося стороннего наблюдателя, при приближении к критической окружности, должно течь все медленнее и, соответственно, все происходящие внутри звезды процессы, включая само схлопывание, будут протекать все медленнее, пока совсем не остановятся.
Каким бы странным ни казалось это предсказание, другое, даваемое формулами Оппенгеймера и Снайдера, было еще удивительнее. Хотя, с точки зрения покоящегося внешнего наблюдателя, схлопывание замораживается на критической окружности, на взгляд наблюдателя, находящегося на поверхности звезды и движущегося вместе с ней, оно вовсе не прекращается. Если звезда имеет массу в несколько солнечных масс и сжимается, начиная примерно с размера Солнца, то для наблюдателя на ее поверхности она сожмется до критической окружности за время порядка часа и затем, пройдя критическую отметку, продолжит схлопывание к все меньшим окружностям.
К 1939 г., когда Оппенгеймер и Снайдер обнаружили все это, физики уже привыкли к тому факту, что время относительно: в системах отсчета, движущихся во Вселенной по-разному, течение времени различно. Но никогда ранее никто не сталкивался с подобной разницей между системами отсчета. Трудно было принять, что схлопывание навсегда замораживается для наблюдателя в одной покоящейся системе отсчета, но быстро развивается, проходя точку замерзания, при измерении в системе отсчета, связанной с поверхностью звезды. Зная о таких предсказаниях, все, кто изучал математические расчеты Оппенгеймера и Снайдера, чувствовали неудобство. Можно было, конечно, на это неудобство махнуть рукой и ограничиться эвристическими объяснениями, но ни одно из них не казалось удовлетворительным. Все это будет оставаться непонятным вплоть до конца 1950-х годов.