Чтение онлайн

ЖАНРЫ

Далекое будущее Вселенной Эсхатология в космической перспективе
Шрифт:

В христианском богословии и изучении Нового Завета существуют, разумеется, многочисленные и разнообразные научные интерпретации воскресения: от тех, что считают его чисто субъективным, психологическим или духовным опытом, до тех, что рассматривают его как объективное событие, происшедшее с Иисусом из Назарета после Его распятия и погребения. Ученые, развивающие вторую точку зрения, как правило, связывают телесное воскресение Иисуса с эсхатологическим преображением мира «в конце времен» из нынешнего его состояния в «новое творение», включающее в себя и всеобщее воскресение. Для более субъективных истолкований естественные науки почти или вовсе никакой проблемы не представляют. Но для тех, кто защищает телесное воскресение, проблема очевидна и тяжела: если исполнятся предсказания современной научной космологии (будь то о «замораживании» или о «поджаривании» вселенной), то, видимо, вселенная никогда не преобразится в новое творение. Не будет и всеобщего воскресения, а это означает, в свою очередь, что Христос не воскрес из мертвых, и наша надежда на воскресение и жизнь вечную тщетна (1 Кор 15:12–19) [110]

110

Можно сказать, что богословие, в свою очередь, ставит вызов перед наукой: если телесное воскресение Иисуса из мертвых является фактической истиной, значит, и всеобщее воскресение возможно.

Это, в свою очередь, должно означать, что будущее вселенной не таково, как предсказывает его научная космология, поскольку эти предсказания основаны на вселенной, какой мы ее знаем, а не на новом творении Божьем.

Сейчас я не собираюсь вмешиваться в эти споры и выступать защитником той или иной позиции субъективного/объективного спектра. Вместо этого подойду к проблеме гипотетически: намеренно приму «худший из возможных» сценариев, делающий христианство наиболее уязвимым для атеистических критиков, а именно телесное воскресение Иисуса и эсхатологическое преображение вселенной в новое творение. Такая позиция, разумеется, чрезвычайно спорна; но мне важно то, что она более, чем какое-либо иное истолкование, вызывает наиболее серьезные и, возможно, неразрешимые конфликты и противоречия с наукой. Следовательно, здесь стоит использовать стратегию «что, если»: в сущности, перед нами «пробный камень» высочайшей сложности для тех из нас, кто считает, что богословие и наука должны находиться в отношении «творческого сотрудничества и взаимодействия», а не «конфликта».

Статья начинается кратким обзором физической космологии (17.2). Затем, сказав несколько слов о значении воскресения в христианском богословии, я перехожу к тому вызову, который представляет космология для богословия и науки (17.3). Чтобы продвинуться вперед, я предлагаю некое расширение современной методологии в области богословия и науки, а затем формулирую несколько направлений, предложений и шагов по реконструкции эсхатологии в свете науки и по исследованию интересных вопросов физики и космологии в свете эсхатологии (17.4). Далее я описываю в самых общих чертах возможные будущие программы исследований как в богословии, так и в науке, которые могут представлять интерес в свете этих направлений (17.5). Эта статья — первый шаг в ответе на вызов воскресения, эсхатологии и научной космологии [111] . Надеюсь, читатели найдут здесь полезный очерк как некоторых важных проблем, так и тем для размышления на будущее.

111

Работа над статьей частично спонсирована Филадельфийским центром религии и науки.

17.2. Физическая космология

Наше столетие и в особенности несколько последних десятилетий ознаменованы мощным подъемом физической космологии [112] . Для удобства я выделю три фазы этого подъема: общая теория относительности / космология большого взрыва, инфляционная модель / модель горячего Большого взрыва и квантовая гравитация / квантовая космология.

17.2.1. Общая теория относительности Эйнштейна (ОТО) / космология Большого взрыва

112

Популярные введения в тему см. в [26, 95], [30] гл. 1–9, [101] гл. 1–9, [17] прил. 1. Более научные введения в тему см. в [66], [61] часть 6.

В 1915 году Альберт Эйнштейн опубликовал полевые уравнения ОТО, связывающие кривизну пространства–времени с распределенной в пространстве–времени энергией: R — 1/2 R g =. В упрощенном описании: «Пространство–время указывает массе, как двигаться; масса указывает пространству–времени его кривизну» ([61], с. 5). В 1920–е годы телескопические наблюдения Эдвина Хаббла показали, что галактики вокруг нашего Млечного Пути удаляются от нас со скоростью, пропорциональной их расстоянию, как сформулировано в законе Хаббла [113] : так было открыто расширение вселенной. В этот период были созданы и проверены результатами наблюдений три космологические модели: модель плоской вселенной, открытой вселенной (бесконечная по размерам, бесконечно расширяющаяся, температура падает, пока не достигнет абсолютного нуля, — сценарий «замораживания») и закрытой вселенной (конечная по размерам, постоянно сжимается в отсутствие космологической константы, температура постоянно повышается до бесконечности — сценарий «поджаривания»). Все эти модели включают в себя изначальную сингулярность, которая для удобства обозначается как «t = 0», где t — космологическое время. В этом смысле (хотя здесь есть над чем подумать философам) эти модели Большого взрыва указывают на то, что можно очень упрощенно назвать «рождением вселенной».

113

Данные Хаббла, в сущности, показали линейное соотношение между величиной и красным смещением света отдаленных галактик; затем величина была интерпретирована как расстояние, а красное смещение — как скорость удаления.

Основная их соперница, модель стационарного состояния Хойла и его коллег, была полностью опровергнута в 1960–х годах в свете объяснений, которые Большой взрыв давал расчетам радиоисточников, относительному изобилию водорода и гелия, а также космическому микроволновому фоновому излучению [114] . Однако оставалось множество важных технических проблем, в том числе проблема горизонта, отношения материи/антиматерии и изначальной сингулярности t = 0. Теоремы Роджера Пенроуза [73], Стивена Хокинга [35, 36, 38] и Роберта Героха [29] в 1960–х годах доказали, что космологические пространства–времена, удовлетворяющие полевым уравнениям Эйнштейна, должны быть сингулярными, если выполняются определенные условия, по–видимому, выполняющиеся в реальной вселенной [115] . Самое важное из этих условий, не считая существования замкнутой поверхности — «ловушки» (что следует из существования космического фонового излучения черного тела), следующее: тензор энергии массы Т должен подчиняться неравенству (Т — 1/2 g T) u u >= 0 для всех единичных время–подобных 4–мерных векторов и. Для поля газообразной материи неравенство сокращается до условия, что + 3р >= 0, где — плотность энергии газа, а р — его давление. Стандартные модели Большого взрыва удовлетворяют этим условиям и, следовательно, характеризуются изначальной сингулярностью. Однако одна из версий теории стационарного состояния («теория почти стационарного состояния») до сих пор не опровергнута и, по сообщениям исследователей, согласуется с наблюдениями [39].

114

Об истории этих исследований

подробнее см. в [53].

115

Начальные сведения об этих четырех условиях и ссылки см. в [61], раздел 34.6. Научное обсуждение см. в [37], гл. 8.2. Дополнительные ссылки см. в [103], с. 350–354.

17.2.2. Инфляционная модель / модель горячего Большого взрыва

Инфляционные модели были разработаны в 1980–х годах Аланом Гутом. Они предполагают в очень ранней вселенной (около планковского времени 10 –43секунд) расширение по экспоненте до того, как все успокаивается и переходит к одному из обычных сценариев Большого взрыва. Инфляционный Большой взрыв предлагает решения для проблем горизонта, однородности и формирования структур, но не устраняет разногласия относительно t = 0. Инфляционные модели нарушают неравенство + 2р >= 0, оставляя, таким образом, вопрос о существовании изначальной сингулярности открытым или даже, возможно, в принципе «нерешаемым» [116] . «Вечная хаотическая инфляция» Андрея Линде предполагает, что во вселенной существует множество расширяющихся областей, подобных нашей, но каждая со своими параметрами; они бесконечно воспроизводятся и создают новые расширяющиеся области, вместе образуя всеохватывающую квазифрактальную структуру, которая существует вечно [57]. Изначальные условия инфляции заданы некоей предшествующей эрой квантовой гравитации.

116

См. об этом в [52], а также [5], гл. 6, особ. с. 181. Существуют теоремы, доказывающие, что в инфляционных космологиях сохраняются сингулярности; но возможно, что различные условия этих теорем не выполняются.

17.2.3. Квантовая гравитация / квантовая космология

Последние исследования в области квантовой космологии включают в себя модель Хартла / Хокинга [31], инстантон Тьюрока / Хокинга, сценарии «до Большого взрыва», брейнкосмологию и т. д. Хотя эти сценарии совершенно различны, оканчиваются они одинаково — Большим взрывом, за которым следует инфляционная эпоха. Однако квантовая космология весьма спекулятивна. Теории, включающие в себя квантовую гравитацию, лежащую в основе квантовой космологии, чрезвычайно трудны для проверки и еще больше усложняют философские дискуссии, которые уже существуют в связи с квантовой механикой, поскольку областью исследований теперь является вселенная в целом [117] .

117

Доступное введение в проблематику см. в [30], гл. 10 и далее; [101], гл. 10 и далее; [17], Приложения 3 и 4. Более подробно см. в [43, 44].

17.2.4. «Нижний предел» в космологии далекого будущего и обсуждения возможности жизни в нем

Если детальное понимание раннейвселенной требует от нас ответов на еще нерешенные теоретические вопросы из области физики элементарных частиц и теорий великого объединения (ТВО), то обсуждать далекое будущеемы можем с большей уверенностью, применяя общую теорию относительности, квантовую механику и термодинамику (по крайней мере, пока закрытая вселенная снова не достигнет планковских размеров). Мы получаем все больше свидетельств, что плотность материи в видимой вселенной намного ниже критической плотности, необходимой для замкнутой вселенной. Скорость ее расширения, по–видимому, растет, что можно отнести за счет существования ненулевой космологической константы, L, введенной в полевые уравнения ОТО: g + R — 1/2 Rg = 8Т . Как показал Лоренс Краусс ([54], см. также [13]), свидетельства существования получаются сейчас как из теоретических данных, так и из результатов наблюдений. Положительное значение , повышая общую эффективную плотность энергии, могло бы закрыть вселенную; но видимая нам вселенная, по–видимому, все равно будет расширяться вечно. Однако этим дело не кончается: вполне возможно, что вселенная снова «схлопнется» (если космологическая константа — на самом деле вариабельная «квинтэссенция», которая отомрет в далеком будущем, а регионы пространства имеют положительную кривизну).

Весьма разумный прогноз для сценариев как закрытой, так и открытой вселенной сделан Фрэнком Типлером и Джоном Бэрроу [118] : через пять миллиардов лет солнце станет красным гигантом, поглотит орбиты Земли и Марса, а затем начнет постепенно превращаться в белого карлика. Через 40–50 миллиардов лет в нашей галактике закончится образование звезд. Через 10 12лет все массивные звезды превратятся в нейтронные звезды или в черные дыры [119] . Через 10 19лет погасшие звезды на периферии галактик переместятся в межгалактическое пространство, а звезды в центре галактик сольются, образовав массивные черные дыры. Через 10 20лет орбиты планет распадутся вследствие гравитационной радиации. Через 10 31лет протоны и нейтроны распадутся на позитроны, электроны, нейтрино и фотоны. Через 10 34лет мертвые планеты, черные карлики и нейтронные звезды исчезнут, их масса полностью превратится в энергию, останутся лишь черные дыры, электронно–позитронная плазма и радиация. Все формы жизни на углеродной основе неминуемо исчезнут. Затем звездная масса, галактическая масса и, наконец, масса суперкластеров черных дыр испарятся благодаря радиации Хокинга. Согласно Типлеру и Бэрроу, наша судьба определена:

118

Бэрроу и Типлер [7], см. также [99] и [102], гл. 14.

119

Если вселенная закрыта, то через 10 12лет вселенная достигнет своего максимального размера, а затем снова «схлопнется» в сингулярность, подобную изначальному состоянию до Большого взрыва. Однако космологическая константа может заставить вселенную расширяться вечно.

Конечный распад протонов предсказывает судьбу протонно–нейтронной жизни — homo sapiens и всех прочих форм жизни, состоящих из атомов… Даже если разумные существа научатся расширять ареал подвластного им пространства со скоростью света… барионная жизнь исчезнет, если вселенная плоска или открыта, или же в достаточно продолжительной закрытой космологии. ([7], с. 649).

Однако не следует упускать из виду, что это заключение относится только к видимой нами части вселенной. Пока все это происходит, в других регионах могут происходить новые «Большие взрывы», появляться новые пузыри, и некоторые из них, возможно, переходить в стабильное состояние. В хаотическом инфляционном сценарии одновременно со смертью старых вселенных рождаются новые. Продолжительное стабильное состояние среди этих постоянных рождений и смертей вполне возможно и, как полагают некоторые, является истинным состоянием вселенной [57]. Здесь, как мы увидим далее, скрывается серьезный вызов христианской эсхатологии.

Поделиться с друзьями: