Чтение онлайн

ЖАНРЫ

Дарвинизм в XXI веке
Шрифт:

Впрочем, о недарвиновских теориях эволюции мы поговорим несколько позже (во второй части книги), а пока попробуем разобраться с мутациями. Собственно говоря, существование случайных мутаций не отрицал никто: все понимали, что никакая реальная система копирования не может работать абсолютно точно, а значит, случайные ошибки в копируемых ею текстах всегда возможны. Как бы трепетно ни относились средневековые монахи-переписчики к священным библейским текстам, сохранившиеся экземпляры рукописных книг того времени содержат вполне ощутимое число случайных описок – это охотно подтвердит любой специалист по средневековым текстам.

Но тот же специалист скажет и другое: переписывая другие, светские тексты (сочинения античных авторов, летописи и хроники миновавших эпох и т. д.), монахи не стеснялись целенаправленно редактировать их в духе времени и собственных взглядов. В результате чего, например, убежденный фарисей Иосиф Флавий оказывался автором благоговейного отзыва об Иисусе Назаретянине. Неужели

организм не делает ничего подобного со своими генами?

Мы знаем, что практически все организмы способны в тех или иных пределах изменяться адекватно условиям окружающей среды. Даже у самых простых из современных живых существ – бактерий – есть такие возможности. Если, скажем, в среду, где живет культура кишечной палочки, добавить молочный сахар (лактозу), очень скоро в клетках бактерий появится фермент лактаза, способный его расщеплять. Кончится лактоза – прекратится и синтез фермента. Различные бактерии умеют менять форму, отращивать или убирать жгутики и цитоплазматические выросты, покрываться плотной оболочкой или сбрасывать ее – в зависимости от ситуации.

Еще более разнообразны возможные ответы на вызовы среды высокоорганизованных существ. Они могут изменять свое поведение (кочевки, переход на сезонные корма), физиологию (зимняя спячка), морфологию (сброс листьев, отращивание новых побегов), биохимию. Некоторые организмы включают “запасную” программу развития: если развивающиеся личинки некоторых видов кобылок видят вокруг себя мало соплеменников, они развиваются в одиночных кобылок, если много – в саранчу (подробнее см. главу 11). Словом, организмы способны к адаптивным изменениям на самых разных уровнях. Так не логично ли предположить, что и их геном может меняться не только случайно, но и целенаправленно, соответственно требованиям окружающей среды?

О поисках “направленных мутаций” можно написать толстую книгу. Но подробный рассказ об этой драматической эпопее не входит в нашу задачу. Здесь же скажем лишь, что за несколько десятилетий энтузиасты так и не нашли ничего хоть сколько-нибудь убедительного. Неоднократно раздававшиеся крики “Эврика!” неизменно смолкали – либо после первой же корректной проверки, либо даже без нее, когда самим авторам не удавалось повторить свой результат.

Тем не менее в ряде публикаций последних десятилетий можно найти утверждения, что неслучайность мутаций все-таки обнаружена и более того – что представление о чисто случайном характере мутаций полностью опровергнуто. В тех случаях, когда авторы этих утверждений дают себе труд привести какие-либо подробности, речь обычно идет о некоторых действительно интересных феноменах, открытых в 1980-е годы.

Во-первых, обнаружилось, что у одного и того же вида частота мутаций различных участков генома может различаться очень сильно – порой на порядок. Во-вторых, оказалось, что при размножении в стрессовых (умеренно неблагоприятных) условиях частота мутаций в бактериальных клетках резко возрастает. Удалось даже выяснить механизм этого явления: при стрессе в клетке работает “альтернативная” ДНК-полимераза, делающая гораздо больше ошибок, чем “штатная”. Влияние стресса на частоту мутаций вроде бы найдено и у эукариот, хотя там разница не так велика и само ее существование удается заметить не всегда.

Наконец, был расшифрован молекулярный механизм формирования антител – иммунных белков, связывающих любые достаточно крупные чужеродные молекулы, попавшие в организм. Оказалось, что при размножении В-лимфоцитов (клеток, производящих антитела) гены антител необычайно интенсивно мутируют. Поскольку все прочие гены этих клеток мутируют “в обычном режиме”, остается сделать вывод, что гипермутагенез (так ученые назвали это явление) есть не что иное, как проявление какого-то специального механизма, изменяющего строго определенные гены. А это означало, что мутации могут быть результатом не только случайных ошибок копирования или внешних повреждающих факторов, но и целенаправленного воздействия организма на собственные гены [20] . Правда, процесс этот известен лишь для специализированных иммунных клеток, никогда не передающихся потомству. Но если это может делать лимфоцит, почему бы этого не делать гоноцитам – предшественникам половых клеток?

20

При этом организм воспроизводит в многократно усиленном виде не только мутационный процесс, но и действие отбора: те клетки, чьи мутантные антитела связываются с антигеном лучше, чем исходные, начинают размножаться еще интенсивнее, те же, у кого мутация ухудшила эти способности антител, замедляют или даже прекращают размножение.

Если вам после прочтения двух последних абзацев показалось, что эти новые факты и в самом деле несовместимы с представлением о случайности мутаций, прошу представить, что вы пришли в казино. Вот за ближайшим к вам столиком крупье закончил принимать ставки и энергично крутанул рулетку. Случайны ли его действия? Конечно, нет – они вполне целенаправленны и включают в себя использование довольно сложного механизма, созданного специально

для этих целей. А вот результат их совершенно случаен. И именно это является целью нашего крупье: заметив, что шарик останавливается на одних номерах чаще, чем на других, он (если только он не шулер) сочтет такую рулетку неисправной и перестанет ею пользоваться. Иными словами, целенаправленность механизма, обеспечивающего те или иные события, совершенно не исключает случайности самих событий.

Именно это и имеет место в рассмотренных нами случаях. Специальные исследования показали: и в случае повышенного мутагенеза у попавших в стрессовые условия бактерий, и в случае гипермутагенеза генов антител при размножении В-лимфоцитов возникают все возможные варианты мутаций. И вероятность каждого из них по отношению к другим – та же, что и в обычном, “фоновом” мутагенезе. Просто все они вместе случаются гораздо чаще.

Получается, что во всех случаях, когда обстановка требует внесения в генетический текст адаптивных изменений, это достигается только через внесение изменений случайных и их последующий отбор. Это кажется абсолютно нелогичным, противоречащим здравому смыслу. Если поведение, физиология, формообразовательные процессы в той или иной степени способны к прямым адаптивным изменениям – почему этого не происходит с генами? Если гены управляют не только всей повседневной деятельностью каждой клетки, но и всем процессом развития многоклеточного организма, следят за балансом внутренней среды, обходят блокированные биохимические пути, отвечают на вызовы внешнего мира и т. д. – как может быть, что ими самими управляет слепая случайность?!

Но давайте вернемся ненадолго к бактерии, умеющей синтезировать фермент только тогда, когда для него есть работа. Это происходит потому, что у нее есть, во-первых, ген данного фермента и, во-вторых, регуляторный участок ДНК, реагирующий на лактозу. Достаточно вывести из строя (скажем, мутацией) любой из этих участков, чтобы клетка утратила способность адекватно реагировать на присутствие лактозы, хотя бы от этого зависела ее жизнь [21] . Иными словами, способность организма к адекватным изменениям обеспечивается его геномом и им же задаются пределы этой способности. У более сложно устроенных организмов связь между изменением работы генов и внешними изменениями гораздо длиннее, включает множество промежуточных звеньев и не всегда может быть прослежена. Но принцип остается тем же: и сама способность меняться определенным образом в ответ на определенные внешние воздействия, и пределы этих изменений заданы геномом.

21

Как мы увидим в главе “И все-таки они наследуются. Но…”, иногда бактериям-мутантам все же удается выйти из такого положения – но не из дарвиновской модели эволюции.

Меньше всего я хотел бы, чтобы меня поняли в том смысле, будто ни один организм не может в течение жизни создать ничего нового, а может только извлечь из генома подходящую программу, если она там есть. Это, конечно, не так – что легко видеть даже в нашем повседневном поведении. Практически любой более-менее здоровый человек может научиться ездить на двухколесном велосипеде или танцевать вальс – несмотря на то, что его геном не содержит информации о соответствующих последовательностях движений. Достаточно того, что он обеспечивает нам определенный набор элементарных движений и умение строить из них цепочки неограниченной длины и сложности. Примерно так же человек или техническая система, зная лишь 32 буквы русского алфавита, может прочесть или написать текст какой угодно длины и сложности. Но при этом не сможет прочесть даже один символ, которого не было в исходном алфавите (скажем, китайский иероглиф или знак из деванагари – традиционной индийской письменности). Некоторые люди, например, не могут правильно произносить русскую фонему “р”. Это – врожденная особенность, и никакие тренировки тут не помогут: у таких людей просто нет мышечных волокон, позволяющих языку совершать нужные вибрации в нужном положении. В лучшем случае такой человек может научиться издавать подобие нужного звука, производя его другими частями речевого аппарата – например, гортанью (получается что-то вроде французского r). Индивидуальная адаптация, для которой нет генетической базы, невозможна.

Но если геном может изменять самые разные признаки организма в ответ на изменение внешних условий – кто или что может целенаправленно изменять сам геном?

Первый напрашивающийся ответ: сами гены, только другие. Мы сегодня знаем, что белки, кодируемые изрядной частью наших генов (по меньшей мере примерно тремя тысячами – при том, что их всего чуть более 21 тысячи), нужны исключительно для управления активностью других генов. И это – не считая регуляторных участков ДНК, которые управляют работой генов, не кодируя собственные белки. Если одни гены могут изменять активность других – почему они не могут изменить их содержание?

Поделиться с друзьями: