Чтение онлайн

ЖАНРЫ

Data Science для карьериста
Шрифт:

Инженер данных

Инженер данных занимается хранением данных в БД и обеспечением доступа к ним. Он не составляет отчеты, не проводит анализ и не разрабатывает модели; вместо этого он аккуратно хранит и форматирует данные в хорошо структурированных базах для других специалистов. Инженеру данных могут поручить хранение записей о клиентах в крупномасштабной облачной базе и добавление в нее новых таблиц по запросу.

Инженеры данных существенно отличаются от дата-сайентистов – они даже более редкие и востребованные специалисты. Такой сотрудник может помочь создать серверные компоненты данных внутренней экспериментальной системы компании и обновить поток обработки данных, когда задачи начинают занимать слишком много времени. Другие специалисты разрабатывают и отслеживают пакетные среды и потоковую передачу, управляя данными на всех этапах

от сбора до обработки и хранения.

Если вас интересует инженерия данных, вам потребуются глубокие знания в области информатики; многие инженеры данных – это бывшие инженеры-программисты.

Вики Бойкис (Vicki Boykis): дано ли каждому стать дата-сайентистом?

Учитывая весь оптимизм (и большие потенциальные зарплаты, о которых пишут в новостях) в отношении Data Science, легко понять, почему эта сфера дает привлекательные возможности для карьерного роста, особенно если учесть, что диапазон и количество должностей в DS продолжают расти. Однако начинающему специалисту важно иметь реалистичное и детальное представление о том, как будет развиваться рынок Data Science в ближайшую пару лет, и в соответствии с этим корректировать свои решения.

Сегодня на сферу науки о данных влияет несколько основных тенденций. Во-первых, Data Science как область знаний существует уже десять лет и за это время прошла через ранние стадии цикла хайпа: ажиотаж в СМИ, быстрое внедрение и консолидация. Вокруг DS было много шума, ее обсуждали в медиапространстве, внедряли компании Кремниевой долины и не только, и сейчас мы находимся на этапе быстрого развития области в крупных компаниях и стандартизации таких программных средств обработки данных, как Spark и AutoML.

Во-вторых, в результате быстрого развития отрасли возник избыток новых специалистов, пришедших после изучения новых программ в университетах, буткемпах или на онлайн-курсах. Число кандидатов на любую должность в области Data Science, особенно на начальном уровне, выросло с 20 человек на место до 100 или более. Теперь нередко можно увидеть даже 500 резюме на одну вакансию.

В-третьих, стандартизация наборов программных средств, обеспеченность рабочей силой и спрос на специалистов с опытом работы привели к изменениям в порядке распределения рабочих мест и к созданию иерархии должностей и функциональных обязанностей в Data Science. Например, в одной компании дата-сайентист может заниматься созданием моделей, а в другой – главным образом выполнением анализа SQL, что соответствует, скорее, должности аналитика.

Для тех, кто хочет прийти в Data Science с нуля, это означает несколько вещей. Во-первых, и это самое важное, они увидят, что рынок труда наполнен конкурентами. Особенно это касается тех, кто, в принципе, только начинает работать (например, выпускников колледжей), либо тех, кто пришел в отрасль из какой-либо другой сферы и конкурирует за место с тысячами таких же соискателей. Во-вторых, они могут претендовать на вакансии, которые не совсем соответствуют тому образу Data Science, который создается в СМИ, будто это исключительно написание и внедрение алгоритмов.

Учитывая эти тенденции, важно понимать, что изначально может быть непросто выделиться среди других кандидатов и попасть на финальный этап собеседования. И хотя стратегии, приведенные в этой книге, могут показаться сложными, они помогут вам привлечь внимание, а это необходимо в сложившихся условиях высокой конкуренции.

Инженер-исследователь

Ученый-исследователь разрабатывает и внедряет новые программные средства, алгоритмы и методологии, которые часто используются другими дата-сайентистами в компании. Такие должности почти всегда требуют наличия кандидатской степени, обычно в области информатики, статистики, количественных социальных наук или в смежных направлениях. Ученому-исследователю может потребоваться несколько недель, чтобы изучить и испытать методы повышения эффективности онлайн-экспериментов, повысить точность распознавания изображений в беспилотных автомобилях на 1 % или создать новый алгоритм глубокого обучения. Он даже может тратить время на написание исследовательских работ, которые будут редко использоваться в компании, но помогут поднять ее престиж и (в идеале) продвинуться в этой области. Поскольку эти должности требуют очень специфического опыта, мы не будем уделять им особого внимания в этой книге.

1.3. Выбор пути

В главе 3 мы рассмотрим несколько способов обучиться работе с данными, опишем преимущества и недостатки каждого из них, а также дадим несколько советов по выбору пути, подходящего именно вам. На этом этапе было бы неплохо задуматься, в каком направлении Data Science вы хотите специализироваться. Какой опыт у вас уже есть? Мы видели дата-сайентистов, которые в прошлом были инженерами, профессорами психологии, менеджерами по маркетингу, студентами программ статистики и социальными работниками. Часто знания,

полученные в других профессиях и академических областях, могут помочь вам лучше справляться с работой в DS. Если вы уже работаете с данными, подумайте, в какой части треугольника вы находитесь. Довольны ли вы текущим положением? Хотите ли переключиться на другой тип работы в Data Science? Смена специализации зачастую вполне доступна.

1.4. Интервью с Робертом Чангом, дата-сайентистом из Airbnb

Роберт Чанг (Robert Chang) – дата-сайентист в Airbnb, который работает над продуктом Airbnb Plus. Ранее он занимался аналитикой продуктов, создавал конвейеры данных и модели, проводил эксперименты в «Команде роста» (Growth team) Twitter. Роберт ведет блог об инженерии данных, дает советы новичкам, а также рассказывает о работе в Airbnb и Twitter на странице https://medium.com/@rchang.

Расскажите о вашем первом опыте в Data Science.

Моей первой работой был анализ данных в The Washington Post. Еще в 2012 году я был готов оставить учебу и уйти в эту сферу, но не знал, чем именно хочу заниматься. Я надеялся стать специалистом по визуализации данных, так как был впечатлен работой в The New York Times. Когда я пошел на ярмарку вакансий в вузе и увидел, что в The Washington Post требуются сотрудники, я наивно предположил, что они, скорее всего, делают то же самое, что и The New York Times. Я подал заявку и получил работу, не особо вдаваясь в детали.

Если вам нужен пример того, как не следует начинать карьеру в Data Science, возьмите мой случай! Я получил работу в надежде заниматься либо визуализацией данных, либо моделированием, но очень быстро понял, что, скорее, выполняю обязанности инженера данных. Б^ольшая часть моих задач заключалась в создании конвейеров ETL (извлечение, преобразование, загрузка), повторном запуске скриптов SQL и попытках обеспечить запуск отчетов, чтобы можно было представлять ключевые показатели руководству. Тогда я пережил это очень болезненно; я понял, что то, чем мне хотелось заниматься, не соответствовало тому, что было нужно компании, и в конце концов уволился.

Но в последующие годы работы в Twitter и Airbnb я понял, что столкнулся с нормой, а не исключением. При работе с данными их нужно наращивать слой за слоем. Моника Рогати (Monica Rogati) опубликовала знаменитую статью об иерархии потребностей Data Science, попав в самую точку . Но в то время мне не хватало опыта, чтобы оценить, как в действительности устроена работа в этой сфере.

На что следует обращать внимание при поиске работы в Data Science?

При поиске вакансий вам следует обращать внимание на состоянии инфраструктуры данных в компании. Если вы устроитесь в организацию, где куча сырых данных даже не размещена в хранилище, то уйдут месяцы или даже годы, прежде чем вы займетесь чем-то интересным вроде аналитики, экспериментов или машинного обучения. Если вы на такое не рассчитываете, то этап развития компании совершенно не будет соответствовать тому вкладу, который вы хотите внести в организацию.

Чтобы оценить ситуацию, можно задать вопросы вроде: «Есть ли у вас команда по созданию инфраструктуры данных?», «Как давно она создана?», «На что похож стек данных?», «Есть ли у вас команда дата-инженеров?», «Как они взаимодействуют с дата-сайентистами?», «Есть ли у вас процесс инструментального анализа логов, построения таблиц данных и помещения их в хранилище при создании нового продукта?» Если всего этого нет, вы станете частью команды, создающей все с нуля; приготовьтесь потратить на это немало времени.

Второе, на что нужно обращать внимание, – это люди. Особенно присмотритесь к трем типам сотрудников. Полагаю, вы не хотите быть первым дата-сайентистом в компании. Тогда вам следует искать команду с опытным руководителем. Он знает, как создать и поддерживать хорошую инфраструктуру и процессы, чтобы работа специалистов была эффективной. Также ищите менеджера, который поддерживает постоянное обучение. Наконец, очень важно, особенно для новичков, работать с техническим руководителем проекта или старшим специалистом по данным, у которого много практического опыта. Именно этот человек помогает вам лучше всего справиться с ежедневными задачами.

Какие навыки нужны дата-сайентисту?

Я думаю, это зависит от того, на какую должность вы претендуете и чего от вас ожидает работодатель. Престижные компании, как правило, задают высокую планку – иногда необоснованно высокую, ведь к ним выстраивается очередь из желающих. Обычно они ищут «единорогов» – тех, кто работает с R или Python, а также отлично разбирается в инженерии данных, проектировании экспериментов, создании конвейеров ETL и моделей с последующим внедрением в производство. Очень уж много требований к кандидатам! Хотя со временем вы можете освоить все эти полезные навыки, не думаю, что они так уж нужны для начала работы в отрасли.

Поделиться с друзьями: