Чтение онлайн

ЖАНРЫ

Давайте создадим компилятор!
Шрифт:

{–}

{ Look for Symbol in Table }

function InTable(n: Symbol): Boolean;

begin

InTable := Lookup(@ST, n, MaxEntry) <> 0;

end;

{–}

Нам также необходима новая процедура AddEntry, которая добавляет новый элемент в таблицу:

{–}

{ Add a New Entry to Symbol Table }

procedure AddEntry(N: Symbol; T: char);

begin

if InTable(N) then Abort('Duplicate Identifier ' + N);

if NEntry = MaxEntry then Abort('Symbol Table Full');

Inc(NEntry);

ST[NEntry] := N;

SType[NEntry] := T;

end;

{–}

Эта процедура вызывается из Alloc:

{–}

{ Allocate Storage for a Variable }

procedure Alloc(N: Symbol);

begin

if InTable(N) then Abort('Duplicate Variable Name ' + N);

AddEntry(N, 'v');

.

.

.

{–}

Наконец,

мы должны изменить все подпрограммы, которые в настоящее время обрабатывают имена переменных как одиночный символ. Они включают LoadVar и Store (просто измените тип с char на string) и Factor, Assignment и Decl (просто измените Value[1] на Value).

Последняя вещь: измените процедуру Init для очистки массива как показано ниже:

{–}

{ Initialize }

procedure Init;

var i: integer;

begin

for i := 1 to MaxEntry do begin

ST[i] := '';

SType[i] := ' ';

end;

GetChar;

Scan;

end;

{–}

Это должно работать. Испытайте ее и проверьте, что вы действительно можете использовать многосимвольные имена переменных.

Снова операторы отношений

У нас осталось последнее односимвольное ограничение – ограничение операторов отношений. Некоторые из операторов отношений действительно состоят из одиночных символов, но другие требуют двух. Это '<=' и '>='. Я также предпочитаю Паскалевское '<>' для «не равно» вместо '#'.

Как вы помните, в главе 7 я указал, что стандартный способ работы с операторами отношений – включить их в список ключевых слов и позволить лексическому анализатору отыскивать их. Но, опять, это требует выполнение полного анализа выражения, тогда как до этого мы у нас была возможность ограничить использование сканера началом утверждения.

Я упомянул тогда, что мы все же можем избежать неприятностей с этим, так как многосимвольных операторов отношений немного и они ограничены в применении. Было бы легко обрабатывать их просто как специальные случаи и поддерживать их специальным способом.

Требуемые изменения влияют только на подпрограммы генерации кода и процедуры Relation и ее друзей. Сперва, нам понадобятся еще две подпрограммы генерации кода:

{–}

{ Set D0 If Compare was <= }

procedure SetLessOrEqual;

begin

EmitLn('SGE D0');

EmitLn('EXT D0');

end;

{–}

{ Set D0 If Compare was >= }

procedure SetGreaterOrEqual;

begin

EmitLn('SLE D0');

EmitLn('EXT D0');

end;

{–}

Затем измените подпрограммы анализа отношений как показано ниже:

{–}

{ Recognize and Translate a Relational «Less Than or Equal» }

procedure LessOrEqual;

begin

Match('=');

Expression;

PopCompare;

SetLessOrEqual;

end;

{–}

{ Recognize and Translate a Relational «Not Equals» }

procedure NotEqual;

begin

Match('>');

Expression;

PopCompare;

SetNEqual;

end;

{–}

{ Recognize and Translate a Relational «Less Than» }

procedure Less;

begin

Match('<');

case Look of

'=': LessOrEqual;

'>': NotEqual;

else begin

Expression;

PopCompare;

SetLess;

end;

end;

end;

{–}

{ Recognize and Translate a Relational «Greater Than» }

procedure Greater;

begin

Match('>');

if Look = '=' then begin

Match('=');

Expression;

PopCompare;

SetGreaterOrEqual;

end

else begin

Expression;

PopCompare;

SetGreater;

end;

end;

{–}

Это

все, что требуется. Теперь вы можете обрабатывать все операторы отношений. Попробуйте.

Ввод/Вывод

Теперь у нас есть полный, работающий язык, за исключением одного небольшого смущающего факта: у нас нет никакого способа получить или вывести данные. Нам нужны подпрограммы ввода/вывода.

Современное соглашение, установленное в C и продолженное в Ada и Modula-2, состоит в том, чтобы вывести I/O операторы из самого языка и просто включить их в библиотеку подпрограмм. Это было бы прекрасно, за исключением того, что мы пока не имеем никаких средств поддержки подпрограмм. В любом случае, с этим подходом вы столкнетесь с проблемой переменной длины списка параметров. В Паскале I/O операторы встроены в язык, поэтому это единственные операторы, для которых список параметров может иметь переменное число элементов. В C мы примиряемся с клуджами типа scanf и printf и должны передавать количество параметров в вызываемую процедуру. В Ada и Modula-2 мы должны использовать неудобный (и медленный!) способ отдельного вызова для каждого аргумента.

Так что я думаю, что предпочитаю Паскалевский подход встраивания подпрограмм ввода/вывода, даже если мы не нуждаемся в этом.

Как обычно, для этого нам нужны еще несколько подпрограмм генерации кода. Они, оказывается, самые простые из всех, потому что все, что мы делаем это вызываем библиотечные процедуры для выполнения работы.

{–}

{ Read Variable to Primary Register }

procedure ReadVar;

begin

EmitLn('BSR READ');

Store(Value);

end;

{–}

{ Write Variable from Primary Register }

procedure WriteVar;

begin

EmitLn('BSR WRITE');

end;

{–}

Идея состоит в том, что READ загружает значение из входного потока в D0, а WRITE выводит его оттуда.

Эти две процедуры представляют собой нашу первую встречу с потребностью в библиотечных процедурах... компонентах Run Time Library (RTL). Конечно кто-то (а именно мы) должен написать эти подпрограммы, но они не являются непосредственно частью компилятора. Я даже не буду беспокоиться о том, чтобы показать здесь эти подпрограммы, так как они очевидно очень ОС-зависимы. Я просто скажу, что для SK*DOS они особенно просты... почти тривиальны. Одна из причин, по которым я не буду показывать их здесь в том, что вы можете добавлять новые виды возможностей, например приглашение в READ или возможность пользователю повторить ошибочный ввод.

Но это действительно отдельный от компилятора проект, так что теперь я буду подразумевать что библиотека, называемая TINYLIB.LIB, существует.

Так как нам теперь нужно загружать ее, мы должны добавить ее загрузку в процедуру Header:

{–}

{ Write Header Info }

procedure Header;

begin

WriteLn('WARMST', TAB, 'EQU $A01E');

EmitLn('LIB TINYLIB');

end;

{–}

Она возьмет на себя эту часть работы. Теперь нам также необходимо распознавать команды ввода и вывода. Мы можем сделать это добавив еще два ключевых слова в наш список:

{–}

{ Definition of Keywords and Token Types }

const NKW = 11;

NKW1 = 12;

const KWlist: array[1..NKW] of Symbol =

('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE',

'READ', 'WRITE', 'VAR', 'BEGIN', 'END',

'PROGRAM');

const KWcode: string[NKW1] = 'xileweRWvbep';

{–}

(Обратите внимание, что здесь я использую кода в верхнем регистре чтобы избежать конфликта с 'w' из WHILE.) Затем нам нужны процедуры для обработки оператора ввода/вывода и его списка параметров:

Поделиться с друзьями: