Диалоги (июнь 2003 г.)
Шрифт:
А современная философия, как мне кажется, всё-таки ищет место нового в парадоксе, в местах, где есть бессмысленное, то есть то, что – возвращаясь к теореме Гёделя – невозможно ни доказать, ни опровергнуть, и что не требует доказательств или опровержений для себя. То, что просто открывает возможность каких-то новых языков для описания особого типа опыта, который языку классической философии не был подвластен.
В.Р. То есть, это та самая французская философия – Делез, Деррида, Бодрийар…
О.А. Нет. Деррида, на мой взгляд, очень классический философ, он принадлежит скорее…
Доказательность в математике
Участник:
Ершов
Александр Гордон: …естественная наука и пошевельнуться не может. В физике если нет математического аппарата, начинают махать руками и говорить, что это философия или метафизика. И вдруг оказывается, что внутри математики есть проблема с доказательностью, или с определениями, или с языком. Можно рассказать, в чём дело-то?
Юрий Ершов: Дело в том, что доказательность, она в существе самой математики сидит. И поэтому, как и всякая наука, как и всякая технология, математика совершенствует своё основное средство, и поэтому я не могу сказать, что просто есть проблема с доказательностью в математике, а есть другая проблема. Математика как бы объявила себя эталоном доказательности, эталоном образца, эталоном точности и раз уж объявила, то надо этому и следовать. Поэтому вопрос состоит в следующем: то, что считалось доказанным в 17-м веке, то не принималось учёными 18-го века и так далее. Но на рубеже 19 и 20 века произошёл некоторый кардинальный переворот.
Дело в том, что математики привыкли работать с совершенно точно определёнными понятиями, хотя понятие точности тоже всё время меняется и уточняется. Так вот, доказательность лежит в существе этой науки. А что такое доказательство как математическое понятие?
Первые точные определения этому понятию были даны только на рубеже 19-20 века в связи с созданием математической логики. Дело в том, что логика в своё время возникла как прикладной раздел ораторского искусства, риторики. Когда говорят о логике Аристотеля, то надо, конечно, понимать – это была не совсем та логика, которой пользуются математики. Математики в своей деятельности, в финальной деятельности, когда они на суд сообщества своего и более широкой аудитории выносят доказательство теорем, то они, безусловно, пользуются логикой и стремятся к тому, чтобы доказательства были точными, понятными, доступными. Так вот, в каждой науке есть периоды – период накопления фактов и период критический, когда нужно посмотреть, как говорится, всё ли в порядке, и посмотреть на основы, привести здание, которое строится, в более-менее надлежащий порядок, математика не представляет собой исключение из этого. Один из таких периодов перехода от накопления фактов к упорядочению был в конце 19-20 века, когда была сделана попытка вполне развитый математический анализ, алгебру, перевести на более строгую основу.
Тогда появилось понятие «множество», очень такое абстрактное понятие, введение которого в школу привело к достаточно серьёзным отрицательным последствиям. Но для математики это было очень важно. Понятие множества оказалось тем единым понятием, в терминах которого можно было все остальные математические понятия сформулировать. И строилось то, что потом Пуанкаре назвал раем для математики, – «теория множеств». И за проникновение в рай, оказалось, нужно платить. Оказалось, что в тех, казалось бы, совсем новых основаниях построения математики как единого стройного здания обнаружились противоречия. И это был кризис в основаниях математики. Все серьёзные математики того времени: Анри Пуанкаре, Давид Гильберт, Герман Вейль и другие, были озабочены тем, чтобы как-то преодолеть эти противоречия.
И в качестве противоядия, в качестве одного из средств, обеспечивающих беспроблемное развитие математики, явилось создание математической логики, которая позволила впервые дать точные математические определения, а следовательно, и сделать объектом исследования такие понятия, которые в математике использовались, но использовались не как математические понятия, а именно: доказательство и алгоритм. Я не буду про другие говорить, но эти понятия сами по себе весьма важны.
В 1900-м году на Международном математическом конгрессе в Париже Давид Гильберт, знаменитый немецкий математик, я его уже называл, выступил со списком проблем, которые, как он считал, в 20-м веке в математике будут одними из самых
важных. И нужно сказать, что формулировка этих проблем сыграла очень важную роль для развития математики. В частности, человек, который решил одну из проблем Гильберта, сразу получал всемирную известность – так что это был некий критерий. Но в заключение сам Гильберт сформулировал оптимистическое утверждение, что все вопросы, которые математики могут задать, обязательно на них можно получить ответ. Но что это значило, это вопрос довольно сложный.В частности, можно доказать, решить проблему, то есть привести доказательство, что эта проблема имеет положительное решение или отрицательное решение. Но можно задать и более хитрый вопрос. А может быть, нет доказательства ни того, ни другого? Но для того чтобы математически ответить на такой вопрос, нужно знать, что такое доказательство. И когда математическая логика предложила точное определение этому понятию, то получились результаты, которые до сих пор будоражат умы человеческие, а именно, что можно доказать, что нет доказательства того или иного утверждения. Многие люди слышали о теореме Гёделя о неполноте, многие философы рассуждают на эту тему, ну и люди, иногда далёкие от математики и философии, что-то об этом слышали, и много бывает интерпретаций, я тут не хочу анализировать все точки зрения, какие могут быть…
Существует парадоксальное утверждение в теореме Гёделя, утверждение о том, что нечто нельзя доказать. Но я бы, может быть, сделал некоторый короткий экскурс в историю: интерес к формулировке доказательства имеет не только парадоксально-философский, но и чисто позитивный смысл. Я уже говорил, что математика стремится ко всё более точному изложению своего собственного предмета, и одно из достижений ещё древних греков было создание аксиоматического метода. Суть изложения геометрии по Евклиду (оно было отражено и в учебниках Киселёва) состоит в том, что геометрические истины начинаются с формулировок аксиом, а все остальные утверждения, леммы, теоремы, они вытекают из аксиом. Это было на самом деле интеллектуальным открытием.
Я должен сказать, что появление аксиоматического метода произвело сильное впечатление на другие науки. И философы, биологи, физики, тоже попытались изложить так свои системы. Вот Спиноза свои сочинения излагал в виде такого аксиоматического, систематического изложения. Но как показало дальнейшее развитие, там было два ну не то что бы изъяна, а две вещи, которые надлежало более серьёзно проанализировать и уточнить. Одно из них состояло в следующем. Вот есть аксиомы, все остальные истины должны получаться из них или доказываться из этих аксиом. А что такое доказательство? Если оно точно не сформулировано, то здесь остаётся элемент неопределённости. Как говорится, по согласию внутри математического сообщества кое-какие тексты принимались за доказательства, а другие не принимались. То есть математики осознавали, что такое доказательство, хотя иногда возникали и споры, но, тем не менее, этот элемент требовал уточнения.
И вот точная формулировка доказательства составляла, так сказать, следующий уровень точности для аксиоматического метода. И вторая вещь – это язык. Дело в том, что обыденный язык, он не просто двусмыслен, он многосмыслен. Я обычно на лекциях привожу в пример слово «радикал». Есть радикальные партии, есть свободные радикалы в химии и есть, как говорится, радикалы – корень квадратный, который в школе учат. Но если говорить о контекстах, то там многозначность языка становится бесконечной. Но без этого поэзия была бы невозможна, если бы язык, на котором мы разговаривали, имел только один смысл. Но для математики, для науки, стремящейся к точности, это достоинство естественного языка является недостатком. Поэтому другая вещь, которая была нужна, – это создание достаточно богатых формальных языков.
Дело в том, что математика довольно давно начала вводить элементы формального языка – различные обозначения, переменные, знаки для операций, знаки для того же радикала, и так далее. И многие имеют впечатления о математике как о формулах, вот формулы – это элементы формального языка. Но тем не менее, если вы посмотрите даже современные математические журналы, то кроме формул там ещё и довольно большой текст. И математическая логика предложила такие формальные языки, которые включают не только оперативные элементы математики, но и всё содержание математическое может быть изложено на формальном языке. Этим достигался ещё один уровень точности, что поимело, между прочим, любопытные последствия.