Достучаться до небес. Научный взгляд на устройство Вселенной
Шрифт:
МАСШТАБЫ ВСЕЛЕННОЙ
Наше путешествие начинается в привычном нам масштабе — том самом, в котором мы живем, пользуемся разными вещами, видим и трогаем их. Неслучайно именно один метр — не одна миллионная его доля и не десять тысяч метров — лучше всего соответствует размеру самого человека. Один метр — это примерно вдвое больше роста младенца и примерно вдвое меньше роста взрослого человека. Согласитесь, было бы странно, если бы базовая единица длины, которой мы пользуемся ежедневно, равнялась длине муравьиной ножки.
Тем не менее стандартная физическая единица, определенная через какого-то конкретного человека, оказалась бы не слишком полезна, потому что измерительная линейка должна иметь длину, известную и понятную каждому [19] .
19
К примеру, единица длины Древней Греции — стадия — не имела фиксированной длины, поскольку в разные времена основывалась на длине различных частей тела человека в разных регионах страны. — Прим. авт.
Это определение было достаточно произвольным. Оно было придумано, чтобы сделать меру длины — метр — стандартной единицей. Но тот факт, что взята была именно одна десятимиллионная часть квадранта, совсем не случаен. Французское определение гарантировало, что метровую палку удобно будет держать в руках,.
Если говорить о размерах человека, то рост большинства людей ближе к двум метрам, а не к одному; тем не менее никто из нас не дорос до десяти и даже до трех метров. Метр вполне соответствует человеческому масштабу, и с объектом такого размера удобно иметь дело — если, конечно, это безопасно (к примеру, от метровых крокодилов лучше, наверное, держаться подальше). Мы знаем законы физики, применимые в этом масштабе, потому что каждый день наблюдаем их действие. Наша интуиция основана на постоянном наблюдении за предметами, людьми и животными, размеры которых достаточно удобно выражать в метрах.
Узость и ограниченность рамок, в которых мы чувствуем себя уверенно, иногда забавляют меня. Моя двоюродная сестра дружит с игроком Национальной баскетбольной лиги Джоакимом Ноа, и мы никогда не устаем подшучивать над его ростом. При взгляде на какую-нибудь фотографию или зарубки на дверном косяке, отмечавшие в детстве его рост, нас разбирает смех; так же забавно смотреть, как на площадке он без труда блокирует мяч, брошенный другим, не столь высоким игроком. В общем, Джоаким завораживающе высок. Но если разобраться, то получится, что он всего лишь на 15% выше среднестатистического мужчины. У него немного иные пропорции тела, что в некоторых ситуациях дает механическое преимущество, а в некоторых — мешает. Но кости и мышцы устроены у него, в сущности, на тех же принципах, что и ваши.
Законы движения Ньютона и сегодня безошибочно указывают нам, что произойдет, если приложить определенную силу к определенной массе. Эти законы действуют и в отношении нашего тела, и в отношении мяча, который бросает Джоаким. При помощи этих законов мы можем рассчитать траекторию мяча на баскетбольной площадке на Земле и предсказать орбиту, по которой Меркурий обращается вокруг Солнца. Законы Ньютона говорят нам, что, если на тело не действует какая-нибудь сила, его движение будет продолжаться в том же направлении с той же скоростью, что и изначально. Далее сила, действующая на тело, придаст ему ускорение в соответствии с его массой. Наконец, любое действие вызовет равное по силе и противоположное по направлению противодействие.
Законы Ньютона абсолютно справедливы в привычном человеку диапазоне линейных размеров, скоростей и плотностей. Несоответствия выявляются только на очень малых расстояниях, где меняет правила игры квантовая механика, на очень
высоких скоростях, где действует специальная теория относительности, и при громадных плотностях (таких, к примеру, как в черной дыре), где правит бал общая теория относительности.При обычных расстояниях, скоростях и плотностях действие любой из новых теорий, опровергающих законы Ньютона, слишком слабо, чтобы его можно было обнаружить. Однако с помощью современных технологий можно смоделировать условия, в которых ограничения теории Ньютона проявятся вполне наглядно.
ПУТЕШЕСТВИЕ В ГЛУБЬ
Нам придется копнуть достаточно глубоко, прежде чем мы сможем обнаружить новые физические компоненты и законы. Но следует отметить, что в диапазоне от метра до размера атома тоже происходит немало интересного. Многие объекты, с которыми мы сталкиваемся в повседневной жизни, обладают важными свойствами, заметить которые можно только при исследовании более мелких систем (некоторые масштабные ориентиры, упоминаемые в данной главе, вы можете увидеть на рис. 13).
Разумеется, многие объекты, с которыми мы имеем дело, формируются путем простого сложения множества одинаковых фундаментальных элементов, в них нет почти ничего интересного — ни деталей, ни внутренней структуры. Такие экстенсивные системы строятся, как кирпичные стены. Можно сделать стену выше или ниже, добавив или убрав несколько кирпичей, но базовая функциональная единица в ней всегда будет одинакова. Высокая стена фактически ничем не отличается от маленькой стенки. В качестве примера можно привести множество крупных систем, которые строятся за счет добавления в них однотипных элементов. Это относится, к примеру, к микросхемам компьютерной памяти, состоящим из большого количества совершенно одинаковых транзисторов.
Другой тип масштабирования, применимый к крупным системам, — это экспоненциальный рост; такой вариант наблюдается в тех случаях, когда поведение системы определяют не столько фундаментальные элементы, сколько связи между ними. Хотя такие системы тоже увеличиваются с добавлением элементарных «кирпичиков», их поведение определяется не просто числом элементов, а количеством связей. Эти связи возникают не только между соседними элементами, как у настоящих кирпичей, они могут протянуться на некоторое расстояние внутри системы к другим элементам. Примерами могут служить нейронные системы, которые состоят из множества синапсов, связывающих клетки при помощи специальных белков, и Интернет, включающий в себя множество связанных между собой компьютеров. Эти системы сами по себе достойны самого тщательного изучения, и некоторые направления физики действительно имеют дело с соответствующим эмерджентным поведением.
Но физика элементарных частиц не занимается сложными многокомпонентными системами. Напротив, она сосредоточена на обнаружении и распознавании элементарных компонентов и физических законов, которым они подчиняются. Физика элементарных частиц занимается базовыми физическими величинами и их взаимодействиями. Эти мельчайшие компоненты, разумеется, значимы для всех типов сложного поведения, в которое вовлекается множество компонентов. Но наша цель здесь — определить наиболее мелкие базовые компоненты и разобраться в их поведении.
Если говорить о технических и биологических системах, то составные части более крупных систем тоже обладают внутренней структурой. В конце концов, компьютеры построены на микропроцессорах, которые, в свою очередь, построены на транзисторах. А врач, заглядывая внутрь человеческого организма, видит там органы, кровеносные сосуды и все остальное — и все это состоит из клеток и ДНК, которые можно наблюдать только при помощи достаточно сложных приборов. Работа внутренних элементов ничем не напоминает то, что мы наблюдаем на поверхности. С уменьшением размеров элементы, из которых состоят макрообъекты, меняются. Законы, которым эти элементы подчиняются, — тоже.