Достучаться до небес. Научный взгляд на устройство Вселенной
Шрифт:
Тем не менее прогнозисты схожи в одном. Все они занимаются метапрогнозированием — предсказывают, что именно люди захотят предсказать.
ГЛАВА 12. ИЗМЕРЕНИЕ И НЕОПРЕДЕЛЕННОСТЬ
При оценке научных измерений полезно быть на короткой ноге со статистикой и теорией вероятностей. Мне напомнил о пользе вероятностных рассуждений один случай. Несколько лет назад на вопрос, пойду ли я завтра на некое мероприятие, я честно ответила: «Не знаю». Приятель, разочарованный таким ответом, был, по счастью, любителем математики. Так что вместо того, чтобы долго и нудно настаивать на определенном ответе, он попросил меня назвать вероятности того и другого. К собственному удивлению я обнаружила, что ответить на вопрос в такой формулировке намного проще. Хотя названные мной вероятности были всего лишь грубой оценкой, они более точно отражали мои сомнения и неуверенность, чем любое «да» или «нет». В конце концов, такой ответ показался мне куда более
С тех пор я неоднократно пробовала вероятностный подход на друзьях и коллегах в случаях, когда они вроде бы не могли ответить на мой вопрос. Оказалось, что большинству людей нередко проще ответить на вопрос не однозначно, а через вероятности. Человек может не знать, захочет ли он пойти на бейсбольный матч в четверг через три недели. Но если он уверен в том, что ему нравится бейсбол, и не ожидает в ближайшее время командировок, однако сомневается, потому что день будний, он может сказать, что пойдет с вероятностью 80%, хотя и не может гарантировать. Хотя это всего лишь оценка, но названная вероятность — даже такая, которую он просто придумал на месте — более точно отражает реальные ожидания человека, чем простой ответ «да» или «нет».
В разговоре о науке и о том, как действуют ученые, сценарист и режиссер Марк Висенте заметил, что его в свое время поразило, что ученые не любят делать слишком определенные, без всяких оговорок, заявления, которые большинство обычных людей делает не задумываясь. Ученые не обязательно очень уж красноречивы, но они всегда стремятся точно сказать, что они знают, а чего не знают или не понимают, по крайней мере в своей научной области. Они редко говорят «да» или «нет», потому что такой ответ не может точно отразить весь спектр возможностей. Вместо этого они говорят о вероятностях либо ограничивают свои заявления определенными условиями. По иронии судьбы, из-за такой разницы в языке люди часто неверно понимают заявления ученых или преуменьшают их значение. Несмотря на то что ученые стремятся объяснить все как можно точнее, неспециалисты зачастую просто не знают, как интерпретировать их заявления: ведь любой неученый, имея столько свидетельств в пользу своего тезиса, без колебаний сказал бы что-нибудь более определенное. Но для ученого отсутствие 100%-ной вероятности не означает отсутствия знания. Это всего лишь следствие неопределенностей, изначально присущих любым измерениям. Вот об этом мы с вами сейчас и поговорим. Вероятностное мышление помогает уяснить смысл того или иного явления и позволяет принимать взвешенные решения. В этой главе мы подумаем о том, что говорят нам измерения, и разберемся, почему именно вероятностные заявления наиболее точно отражают состояние знаний — научных или любых других — в любой конкретный момент времени.
НЕОПРЕДЕЛЕННОСТЬ ПО–НАУЧНОМУ
В Гарварде недавно прошел диспут, посвященный попыткам определить важнейшие элементы современного образования. Одной из обсуждавшихся категорий (по существу, частью обязательных научных требований) были «эмпирические рассуждения». Предложение состояло в том, что университет должен ставить перед собой цель «научить студентов собирать и оценивать эмпирические данные, взвешивать доказательства, разбираться в оценках и вероятностях, делать выводы из имеющихся данных [пока все нормально —Л. Р.], а также распознавать ситуации, в которых вопрос не может быть разрешен на базе имеющихся свидетельств».
Предложенная формулировка — позже она была изменена — была составлена с самыми лучшими намерениями, но содержала в корне неверное представление о том, как работают измерения, то есть экспериментальные данные. Как правило, наука решает вопросы с определенной степенью вероятности. Конечно, мы можем достичь высокой степени уверенности в каком-то вопросе или наблюдении и высказывать здравые суждения. Однако редко человеку удается решить вопрос полностью — научный или иной — на основании прямых доказательств. Мы можем набрать достаточно данных, чтобы можно было доверять причинно-следственным связям, можем делать необычайно точные предсказания, но, как правило, все они делаются с определенной степенью вероятности. Как говорится в главе 1, неопределенность, даже маленькая, допускает потенциальное существование новых интересных явлений, которые еще надо открыть. Мало что известно со 100%-ной точностью, и ни одна теория или гипотеза не будет гарантированно действовать в условиях, в которых еще не проводились никакие испытания.
В измерения всегда входит некоторый вероятностный компонент. Многие научные измерения опираются на предположение о том, что те или иные явления основаны на существующих физических закономерностях, которые можно открыть при помощи достаточно точных и тщательных измерений. При помощи измерений мы стараемся найти эти физические закономерности. Затем мы можем утверждать, что некий интервал, в пределах которого лежат наши измерения, содержит истинную величину измеряемого параметра с вероятностью 95%. В этом случае мы могли бы сказать, что уверены на 95%. Подобные вероятности сообщают нам достоверность любого конкретного измерения, а также полный спектр возможностей и следствий. Невозможно до конца понять смысл измерения, не зная и не оценивая связанных с ним неопределенностей.
Один из источников неопределенности — то, что
в природе не существует абсолютно точных измерительных инструментов. Для измерений абсолютной точности потребовалось бы устройство, откалиброванное с точностью до бесконечного числа десятичных знаков. Экспериментаторы не в состоянии проводить такие измерения — они могут калибровать свои инструменты лишь с той точностью, которую допускают современные технологии. Чем более развиты технологии, тем точнее измерительные устройства. При всем при том измерения никогда не достигнут абсолютной точности, до каких бы вершин не поднялась техника. Некоторая систематическая погрешность, или неопределенность [41] , присущая самому измерительному устройству, останется всегда.41
В этой книге я использую термин «систематическая неопределенность» (systematic uncertainty), а не более частый— систематическая погрешность» (systematic error). Последняя часто ассоциируется с ошибкой, в то время как «неопределенность» указывает на неизбежные ограничения, налагаемые аппаратурой. — Прим. авт.
Вездесущая неопределенность не означает, что ученые воспринимают все варианты или заявления одинаково (хотя средства массовой информации частенько совершают эту ошибку). Вероятность 50 на 50 в реальной жизни встречается очень редко. Однако все это значит, что ученые (или любой человек, стремящийся к идеальной точности) в своих заявлениях сообщают, что именно было измерено и что это означает в вероятностном смысле, даже если вероятности очень высоки.
Когда ученые и журналисты очень аккуратно выражают свои мысли, они используют в разных значениях два, казалось бы, близких слова: прецизионность и точность. Некое устройство считается прецизионным, если при повторных измерениях одной и той же величины полученные значения не будут слишком сильно отличаться друг от друга. Таким образом, прецизионность — мера уровня изменчивости и схожести результатов. Если результаты повторных измерений отличаются не сильно, то измерения прецизионны. Измеренные таким образом величины дают меньший разброс значений, поэтому среднее значение при повторных измерениях будет сходиться быстрее.
Точность, с другой стороны, говорит о том, как далеко полученное вами среднее значение отстоит от правильного результата. Иными словами, она говорит о том, вносит ли измерительная установка смещение и насколько измерения достоверны. С технической точки зрения ошибка, присущая измерительному устройству, не ухудшает его прецизионности — ведь ошибка каждый раз будет одна и та же, — хотя, безусловно, вредит точности собственно измерения. Систематическая погрешность характеризует неустранимое отклонение от истинного значения, присущее самим измерительным устройствам.
Тем не менее во многих ситуациях даже при наличии идеального измерительного инструмента вам придется проводить многократные измерения, чтобы получить корректный результат. Дело в том, что существует еще один источник неопределенности [42] — статистический; это означает, что измерения необходимо проводить многократно, чтобы результатам можно было доверять. Даже точное измерительное устройство не всякий раз будет давать верное значение, а вот среднее значение при многократных измерениях сойдется к верному ответу. Систематическая погрешность управляет точностью измерений, тогда как статистическая погрешность влияет на их прецизионность. В идеале измерения должны быть и точными, и прецизионными; тогда ожидаемая абсолютная погрешность будет мала, а полученным величинам можно будет доверять. Иначе говоря, вы должны желать, чтобы они лежали в как можно более узком диапазоне (прецизионность) и сходились в конце концов к верному результату (точность).
42
Часто используется термин «статистическая погрешность», когда говорят о неопределенности измерений, связанной с конечностью их числа. — Прим. авт.
Приведем знакомый и весьма важный пример, на котором можно практически рассмотреть все приведенные понятия, — испытания эффективности лекарственных средств. Врачи часто не хотят раскрывать (а может быть, и не знают) соответствующую статистику. Случалось ли вам испытывать острое разочарование от слов: «Иногда это лекарство помогает, а иногда нет»? Подобное заявление скрывает от вас массу полезной информации. Так, в нем ничего не говорится о том, как часто это лекарство срабатывает и насколько статистически та часть населения, на которой его испытывали, схожа с вами. После такого заявления очень трудно принять решение. Гораздо лучше было бы, если бы вам сказали, как часто это лекарство помогает людям, близким к вам по возрасту и физическому состоянию.