Чтение онлайн

ЖАНРЫ

Эффективное использование STL
Шрифт:

Совет 15. Помните о различиях в реализации string

Бьерн Страуструп однажды написал статью с интригующим названием «Sixteen Ways to Stack a Cat» [27], в которой были представлены разные варианты реализации стеков. Оказывается, по количеству возможных реализаций контейнеры

string
не уступают стекам. Конечно, нам, опытным и квалифицированным программистам, положено презирать «подробности реализации», но если Эйнштейн был прав, и Бог действительно проявляется в мелочах… Даже если подробности действительно несущественны, в них все же желательно разбираться. Только тогда можно быть полностью уверенным в том, что они действительнонесущественны.

Например, сколько памяти занимает объект

string
?
Иначе говоря, чему равен результат
sizeof(string)
? Ответ на этот вопрос может быть весьма важным, особенно если вы внимательно следите за расходами памяти и думаете о замене низкоуровневого указателя
char*
объектом
string
.

Оказывается, результат

sizeof(string)
неоднозначен — и если вы действительно следите за расходами памяти, вряд ли этот ответ вас устроит. Хотя у некоторых реализаций контейнер
string
по размеру совпадает с
char*
, так же часто встречаются реализации, у которой
string
занимает в семь раз больше памяти. Чем объясняются подобные различия? Чтобы понять это, необходимо знать, какие данные и каким образом будут храниться в объекте
string
.

Практически каждая реализация

string
хранит следующую информацию:

• размер строки, то есть количество символов;

• емкость блока памяти, содержащего символы строки (различия между размером и емкостью описаны в совете 14);

• содержимое строки, то есть символы, непосредственно входящие в строку.

Кроме того, в контейнере string может храниться:

• копия распределителя памяти. В совете 10 рассказано, почему это поле не является обязательным. Там же описаны странные правила, по которым работают распределители памяти.

Реализации

string
, основанные на подсчете ссылок, также содержат:

• счетчик ссылок для текущего содержимого.

В разных реализациях

string
эти данные хранятся по-разному. Для наглядности мы рассмотрим структуры данных, используемые в четырех вариантах реализации
string
. В выборе нет ничего особенного, все варианты позаимствованы из широко распространенных реализаций STL. Просто они оказались первыми, попавшимися мне на глаза.

В реализации A каждый объект

string
содержит копию своего распределителя памяти, размер строки, ее емкость и указатель на динамически выделенный буфер со счетчиком ссылок (
RefCnt
) и содержимым строки. В этом варианте объект
string
, использующий стандартный распределитель памяти, занимает в четыре раза больше памяти по сравнению с указателем. При использовании нестандартного указателя объект
string
увеличится на размер объекта распределителя.

В реализации B объекты

string
по размерам не отличаются от указателей, поскольку они содержат указатель на структуру. При этом также предполагается использование стандартного распределителя памяти. Как и в реализации A, при использовании нестандартного распределителя размер объекта
string
увеличивается на размер объекта распределителя. Благодаря оптимизации, присутствующей в этом варианте, но не предусмотренной в варианте A, использование стандартного распределителя обходится без затрат памяти.

В объекте, на который ссылается указатель, хранится размер строки, емкость и счетчик ссылок, а также указатель на динамически выделенный буфер с текущим содержимым строки. Здесь же хранятся дополнительные данные, относящиеся к синхронизации доступа в многопоточных системах. К нашей теме они не относятся, поэтому на рисунке соответствующая часть структуры данных обозначена «Прочее».

Блок

«Прочее» оказался больше остальных блоков, поскольку я постарался выдержать масштаб изображения. Если один блок вдвое больше другого, значит, он занимает вдвое больше памяти. В реализации B размер данных синхронизации примерно в шесть раз превышает размер указателя.

В реализации C размер объекта

string
всегда равен размеру указателя, но этот указатель всегда ссылается на динамически выделенный буфер, содержащий все данные строки: размер, емкость, счетчик ссылок и текущее содержимое. Распределители уровня объекта не поддерживаются. В буфере также хранятся данные, описывающие возможности совместного доступа к содержимому; эта тема здесь не рассматривается, поэтому соответствующий блок на рисунке помечен буквой «X» (если вас интересует, зачем может потребоваться ограничение доступа к данным с подсчетом ссылок, обратитесь к совету 29 «More Effective C++»).

В реализации D объекты

string
занимают в семь раз больше памяти, чем указатель (при использовании стандартного распределителя памяти). В этой реализации подсчет ссылок не используется, но каждый объект
string
содержит внутренний буфер, в котором могут храниться до 15 символов. Таким образом, небольшие строки хранятся непосредственно в объекте
string
— данная возможность иногда называется «оптимизацией малых строк». Если емкость строки превышает 15 символов, в начале буфера хранится указатель на динамически выделенный блок памяти, в котором содержатся символы строки.

Я поместил здесь эти диаграммы совсем не для того, чтобы убедить читателя в своем умении читать исходные тексты и рисовать красивые картинки. По ним также можно сделать вывод, что создание объекта

string
командами вида

string s("Perse"); // Имя нашей собаки - Персефона, но мы

// обычно зовем ее просто "Перси"

в реализации D обходится без динамического выделения памяти, обходится одним выделением в реализациях A и C и двумя — в реализации B (для объекта, на который ссылается указатель

string
, и для символьного буфера, на который ссылается указатель в этом объекте). Если для вас существенно количество операций выделения/освобождения или затраты памяти, часто связанные с этими операциями, от реализации B лучше держаться подальше. С другой стороны, наличие специальной поддержки синхронизации доступа в реализации B может привести к тому, что эта реализация подойдет для ваших целей лучше, чем реализации A и C, а количество динамических выделений памяти уйдет на второй план. Реализация D не требует специальной поддержки многопоточности, поскольку в ней не используется подсчет ссылок. За дополнительной информацией о связи между многопоточностью и строками с подсчетом ссылок обращайтесь к совету 13. Типичная поддержка многопоточности в контейнерах STL описана в совете 12.

В архитектуре, основанной на подсчете ссылок, все данные, находящиеся за пределами объекта

string
, могут совместно использоваться разными объектами
string
(имеющими одинаковое содержимое), поэтому из приведенных диаграмм также можно сделать вывод, что реализация A обладает меньшими возможностями для совместного использования данных. В частности, реализации B и C допускают совместное использование данных размера и емкости объекта, что приводит к потенциальному уменьшению затрат на хранение этих данных на уровне объекта. Интересно и другое: отсутствие поддержки распределителей уровня объекта в реализации C означает, что это единственная реализация с возможностью использования общих распределителей: все объекты
string
должны работать с одним распределителем! (За информацией о принципах работы распределителей обращайтесь к совету 10.) Реализация D не позволяет совместно использовать данные в объектах
string
.

Поделиться с друзьями: