Электроника в вопросах и ответах
Шрифт:
Рис. 9.12. Амплитудные характеристики асинхронного усилителя с двумя расстроенными контурами:
1, 2 — отдельных каскадов; 3 — результирующая
Каждый каскад усиливает сигнал в определенной полосе частот относительно частоты настройки резонансного контура. При соответствующем выборе ширины полос контуров результирующая характеристика имеет плоскую вершину и форму, соответствующую амплитудно-частотной характеристике одного каскада с двухзвенным фильтром с оптимальной связью.
Аналогичным образом может быть выполнен трехкаскадный усилитель. В этом
Рис. 9.13. Амплитудные характеристики асинхронного усилителя с тремя расстроенными контурами:
1, 2, 3 — отдельных каскадов; 4 — результирующая характеристика
На основании рассмотренных случаев можно сделать вывод, что в многорезонансном усилителе для получения симметричной амплитудно-частотной характеристики отдельные каскады должны быть сгруппированы в пары с одинаковой добротностью и резонансными частотами, симметричными относительно средней частоты fэ. При нечетном числе каскадов один из них должен быть настроен на среднюю частоту f0.
В результате расстройки контуров в многокаскадном усилителе получают усилитель, полосовые свойства и форма частотной характеристики которого соответствуют каскадам с двух-, трех- и n– звенными фильтрами. Что касается усиления, то оно больше, чем усиление синхронной схемы, имеющей ту же самую ширину полосы пропускания.
Как работает усилитель с расстроенными двухзвенными фильтрами?
При каскадном включении усилительных каскадов с двухзвенными фильтрами происходит, как известно, уменьшение результирующей ширины полосы пропускания усилителя, в связи с чем для получения заданной ширины полосы каждый каскад должен иметь соответственно б'oльшую полосу. Это отрицательно влияет на общий коэффициент усиления всего усилителя.
Для поддержания на максимальной уровне произведения коэффициента усиления на ширину полосы пропускания применяют метод различного формирования характеристик отдельных каскадов, так чтобы при их пересчете результирующая характеристика была максимально плоской. По аналогии с многорезонансными усилителями (с расстроенными контурами) этот метод называют методом расстройки полосовых фильтров, хотя он основан не на настройке отдельных фильтров на разные частоты, а лишь в обеспечении у них разного затухания.
Способ получения максимально плоской амплитудной характеристики из трех различных характеристик отдельных каскадов в трехкаскадном усилителе с двухзвенными фильтрами показан на рис. 9.14. Видно, что в одном из каскадов фильтр имеет оптимальную связь, в другом — сильнее оптимальной, в третьем — более слабую, чем оптимальная.
Рис. 9.14. Амплитудные характеристики с тремя двухзвенными фильтрами при различной связи:
1 — X < Xопт; 2 — X = Xопт; 3 — X > Xопт; 4 — результирующая характеристика
Что такое усилители высокой и промежуточной частот?
Усилители высокой и промежуточной частот являются полосовыми усилителями, применяемыми в приемных устройствах, например в радиоприемнике, телевизоре, радиолокационном приемнике и т. п., которые работают на принципе преобразования частоты (см. гл.11).
Усилитель высокой частоты служит для усиления слабых сигналов, принятых антенной, и поэтому должен иметь малые шумы. Ширина полосы пропускания усилителя высокой частоты может быть различной в зависимости от назначения приемника: от нескольких килогерц в радиовещательном приемнике сигналов с амплитудной модуляцией до нескольких мегагерц в телевизионном приемнике. Усилители высокой частоты обычно являются настраиваемыми.
Усилители промежуточной частоты служат для усиления сигнала промежуточной частоты, полученной в результате преобразования сигнала высокой частоты. Основными параметрами этого усилителя являются коэффициент усиления и избирательность. Последняя обеспечивается путем соответствующего подбора фильтров. Например, в телевизионном приемнике — это многозвенные фильтры или расстроенные двухзвенные фильтры, которые являются нагрузкой отдельных каскадов многокаскадного усилителя.
Что такое резонансный усилитель, работающий в режиме класса С?
Резонансный усилитель класса С является высокочастотным усилителем мощности, предназначенным прежде всего для усиления несущей частоты передатчиков. В зависимости от типа передатчика усилители класса С обеспечивают мощности от нескольких ватт до нескольких сотен киловатт. Нагрузкой усилителя обычно служит соответствующим образом согласованная передающая антенна.
Усилитель класса С может быть создан на транзисторе или на лампе, причем выбор одного из этих активных элементов зависит от вида устройства и заданной выходной мощности. Самые мощные усилители обычно выполняют на лампах.
Как работает усилитель класса С?
Схема усилителя мощности класса С похожа на схему резонансного усилителя напряжения. Рассмотрим ламповую схему, представленную на рис. 9.15.
Рис. 9.15. Усилитель мощности класса С
Анодное напряжение подводится через дроссель высокой частоты, а резонансный контур развязан от анода конденсатором. Передача мощности в нагрузку осуществляется обычно на принципе использования индуктивной связи. Одновременно эта связь служит для энергетического согласования нагрузки с лампой.
Принципиальная разница между усилителем напряжения и усилителем мощности класса С состоит в том, что лампа в усилителе мощности работает при большем отрицательном напряжении на сетке, чем напряжение отсечки анодного тока. В результате, если на сетку подастся переменное напряжение, анодный ток будет протекать в виде импульсов, длительность которых меньше половины периода частоты напряжения, подведенного к сетке. Из-за того что резонансный контур настроен на частоту возбуждающего усилитель напряжения, усиливаться будет лишь основная составляющая возбуждающего напряжения. Поскольку высшие гармоники этого напряжения сильно подавляются резонансным контуром, напряжение на контуре имеет синусоидальную форму, а его частота равна частоте возбуждающего напряжения.