Чтение онлайн

ЖАНРЫ

Электроника в вопросах и ответах
Шрифт:

Что такое запоминающие устройства?

Это схемы, служащие для хранения (запоминания) цифровой информации, закодированной в двоичном коде, и позволяющие воспроизводить эту информацию. Разработан большой набор интегральных микросхем, выполняющих функции запоминающих устройств.

Наипростейшими запоминающими устройствами обычно являются триггеры с двумя устойчивыми состояниями, которые образуют однобитовую ячейку памяти. Большую емкость памяти можно получить путем соединения друг с другом нескольких триггеров. Типичные интегральные микросхемы по технологии ТТЛ имеют емкость памяти 16 бит, а по технологии МОП — до 64 бит.

Существуют также и другие запоминающие устройства, например ферритовые, в которых информация запоминается в небольшом ферритовом сердечнике.

Емкость ферритового запоминающего устройства зависит при этом от количества используемых сердечников.

Что такое преобразователи ЦАП и АЦП?

Преобразователи ЦАП (цифро-аналоговые) заменяют цифровой сигнал аналоговым. В общем можно говорить, что их работа основана на суммировании выходных напряжений усилителей, управляемых цифровым сигналом. Преобразователи АЦП (аналого-цифровые) служат для замены аналогового сигнала цифровым. Схемы этих преобразователей и принципы их действия достаточно сложны.

Глава 13

ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

Какие измерительные приборы применяют в электронике?

В электронике используют много различных измерительных приборов. Большинство из них составляют электронные измерительные приборы, построенные на интегральных микросхемах, лампах, транзисторах, диодах, резисторах, конденсаторах и т. п. Используемые методы измерений тесно связаны с методами и процессами, применяемыми в электронике и радиоэлектронике, например с генерацией колебаний, детектированием, модуляцией, преобразованием, цифровой и вычислительной техникой и т. п. Измерительная техника развивается вместе с электроникой и является наилучшим отражением современного состояния развития. Выпускаемые в настоящее время электронные измерительные приборы характеризуются высокой точностью, стабильностью и надежностью.

Трудно выполнить однозначное разделение измерительных приборов на группы, поскольку критериев деления может быть очень много. Возможно разделение по частотным диапазонам, например приборы для измерения в области низких, средних, высоких и сверхвысоких частот.

Имеются некоторые основные группы измерительных приборов, используемых в каждой области техники и, в частности, в электронике. К ним относятся измерительные генераторы, частотомеры, вольтметры и осциллографы. Эти наиболее характерные для электроники измерительные приборы и будут рассмотрены ниже.

Что такое измерительный генератор?

Измерительный генератор — это генератор синусоидальных колебаний с калиброванной частотой и уровнем мощности. Измерительный генератор обычно обеспечивает плавную перестройку частоты и входного напряжения. Исходя из назначения и диапазона частот различают измерительные генераторы звуковых частот, широкополосные (видеочастотные), а также высокочастотные и сверхвысокочастотные [29] .

29

К измерительным генераторам относятся и генераторы различных несинусоидальных колебаний. — Прим. ред.

Что такое генератор звуковых частот?

Генератор звуковых частот позволяет получать синусоидальные сигналы с частотами в пределах 20 Гц — 20 кГц. В более совершенных генераторах диапазон частот расширен в область как более низких (до нескольких герц), так и более высоких частот (до нескольких сотен килогерц). В генераторе с расширенным диапазоном частот, как правило, весь диапазон разбивается на несколько поддиапазонов, которые выбираются с помощью переключателя.

Генераторы звуковых частот обычно представляют собой RC-генераторы с мостом Вина, с непрерывной перестройкой с помощью конденсаторов. Достоинства таких генераторов следующие: низкое содержание гармоник (0,1–0,5 %), хорошая стабильность частоты (10– 3—10– 4) и амплитуды, а также малые габаритные размеры и масса. Уровень выходного сигнала в генераторах

звуковых частот достигает 10–50 В на ненагруженных выходных зажимах; выходное сопротивление можно изменять в пределах от единиц до 600 Ом.

Генераторы звуковых колебаний используют для испытаний различных низкочастотных цепей, элементов и блоков, теле- и радиоприемников, а также электроакустических устройств. Они служат для питания схем (мостов) при измерении индуктивности и емкости и являются источником сигнала, модулирующего генераторы высокой частоты.

Что такое генератор биений?

Название генератора происходит от способа получения сигналов с частотами, для которых предназначается генератор. Структурная схема генератора биений приведена на рис. 13.1.

Рис. 13.1. Структурная схема генератора биений

Прибор содержит два LC-генератора высокой частоты. Один из них генерирует колебания с постоянной частотой f1. Частоту второго генератора можно изменять в интервале от f2 до f2 + fmах, причем fmах — максимальная частота, на которую можно перестроить генератор. В результате объединения двух сигналов в смесителе на выходе фильтра, устраняющего ненужные составляющие, получают разностную частоту f1f2. Разностная частота может меняться в интервале от 0 до fmах и достигать значений 10–20 МГц.

Главным преимуществом генераторов биений является широкий диапазон перестройки, перекрываемый непрерывно без каких-либо переключений. К недостаткам относятся нестабильность разностной частоты, а также относительно высокий коэффициент содержания гармоник (несколько процентов). Генераторы биений используются для контроля частотных характеристик как селективных, так и апериодических схем, например широкополосных усилителей изображения.

Что такое генератор стандартных сигналов?

Это — высокостабильный генератор высокой частоты, заменяющий в лабораторных условиях естественные источники сигналов, например от передатчика. Многие типы генераторов перекрывают в сумме весь диапазон радиочастот от 50—100 кГц до десятков тысяч мегагерц. В зависимости от назначения генераторы стандартных сигналов выпускаются как генераторы с амплитудной (AM), частотной (ЧМ), с двумя видами модуляции (АМ/ЧМ), импульсной модуляцией (ИМ) и т. п.

Структурная схема одного из таких генераторов, перекрывающего диапазон радиочастот (50 кГц—30 МГц), представлена на рис. 13.2.

Рис. 13.2. Структурная схема генератора сигналов с AM модуляцией

Главным функциональным блоком является высокочастотный генератор, частота которого регулируется ступенчато в соответствии с поддиапазонами и плавно — с помощью перестраиваемого конденсатора в пределах одного поддиапазона. Точность установки и отсчета частоты лежит обычно в пределах 0,5–1,5 %. Сигнал с генератора подается на модулятор, в котором осуществляется амплитудная модуляция. Модулирующим сигналом может служить как сигнал от внутреннего генератора низкой частоты с частотой 1000 Гц, так и сигнал от внешнего генератора. С модулятором связан измеритель глубины модуляции. Выходное напряжение (0,1–1 В) можно уменьшить с помощью резистивного делителя вплоть до — 120 дБ (1 мкВ при исходном входном напряжении 1 В). Выходное сопротивление генератора мало, чаще всего 50 или 75 Ом.

Поделиться с друзьями: