Энергетика сегодня и завтра
Шрифт:
Мы рассмотрели два вида транспорта средней скорости - железнодорожный и автомобильный. Народному хозяйству необходимы также как медленные (морские и речные), так и более быстрые (авиационные) виды перевозок. Но везде важнейшей задачей остается изыскание наиболее эффективных путей сбережения горючего, экономии энергии.
Почти все от Солнца
Электроэнергия из светового луча
В глубине тропических лесов Цейлона расположилась небольшая, но очень необычная деревня. Все ее потребности в тепле, энергии, электричестве удовлетворяют солнечные лучи. Значит, энергетические проблемы могут быть в принципе решены с помощью солнечной энергии?
Не будем спешить с таким выводом.
Например, один из них открыт в городе Сантьяго-деКуба. Здесь при содействии советских ученых создана электростанция на фотоэлементах, которая может снабжать энергией жилые дома.
В нашей стране построены опытные солнечные центры вблизи Дербента, в Узбекистане, под Киевом, в Таджикистане. Каковы же перспективы использования солнечной энергии у нас в стране?
Оценим сначала ее количество, доступное человеку.
Ежегодно солнечные лучи доносят до Земли энергию, эквивалентную 50 триллионам тонн топлива, а это в несколько тысяч раз больше, чем потребляет человечество.
Но плотность ее на поверхности земного шара невелика - 600-1000 ватт, а в среднем с учетом суточно-годовых колебаний и облачности - всего 150-250 ватт на квадратный метр. Для сравнения: когда домашний чайник стоит на газовой плите, плотность поступающей в него энергии в тысячу раз больше. Другими словами, рассеянные солнечные лучи трудно и потому дорого использовать для получения необходимого тепла и электричества.
Тем не менее заманчиво научиться собирать и утилизировать энергию нашего светила. Ведь Солнце - это неиссякаемый, или, как говорят энергетики, ВОЗООНОВЛЯРмый источник энергии. Когда сжигают органическое топ ливо, извлекаемое из недр, оно не восполняется, а если и возобновляется, то очень медленно, даже по геологическим меркам, тогда как термоядерный реактор у нас нал головой будет действовать еще миллиарды лет.
Его лучи не перегревают Землю, являются "недобавляющим" источником энергии. Они не нарушают тепловой баланс всей планеты. Вероятно, это качество окажется важным в перспективе, когда деятельность человека начнет сказываться на тепловом режиме всего земного шара или какого-либо отдельного его региона.
Солнечная топка порождает и поддерживает другие виды возобновляемых энергетических ресурсов, например ветра. Если бы направить все ветры в турбины электрогенераторов,, то удалось бы сэкономить 40-80 миллиардов тонн условного топлива в год. Ведь мощность ветрового потока в среднем на планете - больше 500 киловатт на квадратный километр площади.
Приливы и потоки в морях и океанах, если их полностью утилизировать, позволили бы сэкономить около 4 миллиардов тонн условного топлива в год. Зато фотосинтез может дать до 200 миллиардов тонн условного топлива. Из них только на долю лесов приходится около 25 миллиардов тонн.
Энергетическая программа не оставляет в стороне все эти неарадициопные источники энергии. За их счет намечается производить от 20 до 40 миллионов тонн условного топлива. Примерно столько энергии давали в 1970 году все гидростанции страны.
Предлагается по-разному использовать солнечную топку. Поиск пока идет очень широким фронтом. Уже сегодня нередки солнечные коллекторы для подогрева воды, солнечные фотоэлементы на часах, в космосе.
На повестке дня - солнечные орбитальные электростанции и океанские электрогенераторы, эксплуатирующие напор океанских течений пли перепад температур на поверхности и в глубине океана.
Наиболее
проработан на сегодняшний день традпциониый способ получения электричества из солнечного излучения - через разогрев того или иного рабочего тола (теплоносителя). Ядерные и термоядерные котлы действуют по такому же принципу. Нагретый теплоноситель (например, вода) используется оатем в паровом цикле преобразования тепла в электроэнергию: котел - пар турбина - электрогенератор. Солнечная энерпш концентрируется зеркалами. Если в фокусе параболического отражателя разместить трубу с теплоносителем, то получится котел, в котором и будет генерироваться пар.В мире уже работает несколько подобных установок.
Однако стоимость параболических зеркал чересчур высока. Чтобы удешевить солнечную энергетику, предлагается несколько путей. Судя по всему, лучший из них - переход на системы башенного типа. Эту идею еще в предвоенные годы выдвинул в пашей стране инженер Н. Алшщкий. Ныне башенные станции получили мировое признание. Американцы создали в Барстоу экспериментальную установку мощностью в 10 мегаватт.
В Италии у подножия вулкана Этна функционирует "солнечная башня" мощностью в 1 мегаватт.
В СССР недалеко от Керчи сооружена станция мощностью в 5 мегаватт. Вокруг башни концентрическими кругами размещены 1600 зеркал, направляющих солнечные лучи на паровой котел, который венчает 70-метровую башню. Зеркала площадью 25 квадратных метров каждое с помощью автоматики и электроприводов следят за Солнцем и отражают концентрированную солнечную энергию точно на поверхность котла, обеспечивая ее плотность потока в 150 раз большую, чем Солнце на поверхности Земли. В котле при давлении 40 атмосфер генерируется пар с температурой 250° С, поступающий на паровую турбину. В специальных емкостях-аккумуляторах под давлением содержится горячая вода, накапливающая тепло для работы по ночам и в пасмурную погоду.
Благодаря этим аккумуляторам станция может работать еще три-четыре часа после захода Солнца, а на половинной мощности - около полусуток.
Казалось бы, добывать так энергию просто! На самом деле проблем хватает. Например, как обеспечить автоматическое слежение за Солнцем? Если перед каждым зеркалом поставить оптическую трубу, которая с помощью фотодатчика следила бы за освещенностью, то достаточно какому-либо случайному облаку закрыть солнце, как автоматика выйдет из строя. Нацеливание зеркал на светило требует дополнительных затрат энергии, и конструкторами принято другое решение - не искать Солнце. Ведь траекторию его движения можно задать уравнениями, ввести их в ЭВМ и соответственно поворачивать зеркала. Такой способ слежения за потоком солнечного излучения оказался самым подходящим.
Еще один путь преобразования солнечных фотонов в электроэнергию фотоэлектрический. Немецкий физик Г. Герц открыл в 1887 году, что фотон может выбить электрон из атома металла. Если собрать освободившиеся электроны на какой-то другой металлической поверхности, соединив ее с освещаемым катодом, то по образовавшейся цепи потечет ток. Фотоэмиссионный генератор заработает.
Захватывающие перспективы открываются перед полупроводниковыми генераторами на кремнии. Здесь электрон, получив от фотона энергию порядка одного электрон-вольта, попадает в энергетическую зону проводимости. Большой части фотонов солнечного излучения какраз по силам осуществить подобные переходы электронов кремния. Значит, КПД полупроводникового кремниевого генератора может теоретически достигать почти 100 процентов. К тому же здесь отсутствует тепловая стадия. Однако из-за множества различных причин реальный достигнутый КПД не превышает пока 10-15 процентов.