Энергия и жизнь
Шрифт:
Используя действие огня, человек научился выплавлять из руды твердые металлы, на смену каменному веку пришел бронзовый, а за ним и железный. Неолитическая эволюция и прогресс энергетики привели к тому, что впервые в истории производство пищи и орудий труда стало постоянно превышать минимальные жизненные потребности. Появился прибавочный продукт, а с ним — собственность и государство. Уже не требовалось каждому человеку участвовать в добывании и производстве пищи. Появились квалифицированные специалисты, ремесленники, целиком занятые изготовлением определенных орудий труда и производства. Возросла роль знания, умения, специализации, расширился обмен товарами и идеями, улучшалось энергетическое обеспечение.
Изобретение колеса было одним из самых значительных изобретений этого времени (5–6 тыс. лет назад). Можно сказать, что первые государства и почти вся техническая цивилизация въехали в историю «на колесах». С их развитием потребовались новые источники энергии — простых мускульных сил не хватало. Государство, этот «аппарат насилия», позволяло решать
Мускульная сила рабов резко увеличила энергетические возможности рабовладельческих государств. Меньшинство захватило орудия производства, власть и стало эксплуатировать большинство, используя его труд и энергию,— образовались классы рабов и рабовладельцев. С помощью рабов прокладывались каналы для орошения земель и для отвода воды с затопляемых территорий. Создавались искусственные плотины, изменяющие течение крупных рек. Широко известны грандиозные сооружения, «чудо света», техники и рабовладения того времени,— египетские пирамиды. Удивляет количество труда, вложенного в них. Пять тысяч лет назад за 20–30 лет была построена одна из самых знаменитых пирамид — пирамида египетского фараона Хеопса. Ее высота соответствует высоте современного 50-этажного дома, длина 230 м. Ее возвели сто тысяч рабов из 2,3 млн блоков со средним весом 1,5 т, а некоторые — до 10–15 т. Щели между блоками меньше 0,5 см, грани пирамиды точно обращены на четыре стороны света. Какой яркий пример огромной энергетической мощности государства и... бессмысленного ее применения.
Труд рабов широко использовался в ткачестве, которое постепенно становилось одним из наиболее распространенных ремесел вплоть до создания ткацких мастерских — первых коллективов специалистов. На рабском труде было основано и тяжелое горное дело.
Рабство с течением времени стало тормозить процесс развития энергетики, как источник энергии оно изживало себя. Человек стал искать новые источники, и, естественно, что он обратил внимание на те, что всегда были перед ним: текущую воду и ветер. Мы знаем, что источником этой энергии, движителем круговорота воды и воздуха является поток солнечной энергии, но для древних людей первопричина не была особенно важной. Они уже давно эпизодически пользовались силой движущейся воды и ветра. Так мы переходим к описанию второго этапа развития энергетики, используемой человеком.
Этот этап, как и полагается по законам диалектики развития, давно вызрел в недрах первого периода. Доподлинно доказано старыми документами, что парус применялся не менее 4 тыс. лет назад, а водяное колесо, вращаемое потоком воды, насчитывает более чем двухтысячелетнюю историю.
Но широкое использование энергии воды и ветра относится к фазе повсеместного перемещения народов в Европе, к V—VII вв. н.э.
С гибелью Римской империи и с фактическим затуханием рабовладения физический труд и энергия стали цениться гораздо дороже и старая энергетическая основа — мускульная сила потеряла ведущую роль. Становление нового феодального строя связано и с развитием новой техники. Если первое документальное упоминание о водяной мельнице относится к IV в., то к XI в. их насчитывались десятки тысяч. Добавим к этому, что если лошадь в технической установке заменяла 10 рабов, то хорошее водяное или ветряное колесо — до 100. Ветряные мельницы, хотя и появились позднее водяных, тоже быстро получили широкое распространение, но из-за непостоянства энергоносителя — ветра не могли заменить более непрерывно действующие водяные. Водяные колеса совершенствовались со временем, и к XI в. для их работы использовалась даже сила приливов (в Англии, Франции и позднее, при Иване Грозном, в России, на берегу Белого моря).
Средние века как раз и характеризуются переходом от ручного производства к машинному. Создаются прядильные и ткацкие станки, маслобойные и бумагоделательные машины, металлический сельскохозяйственный инвентарь, лесопильные установки. На все это требовалось огромное количество металла, а добыча руды и угля все усложнялась. Из-за выработки древесного угля, необходимого при выплавке стали (до изобретения кокса), сводились на нет огромные площади лесов. В наиболее промышленно развитой Англии практически не оставалось лесов. Можно говорить о первом серьезном экологическом кризисе, связанном с развитием промышленности.
Но гораздо более серьезным и угрожающим был энергетический кризис. Всем новым машинам нужны были мощные, постоянно действующие движители, независимые ни от положения, ни от сезона в отличие от ветряных и водяных колес. Идея надежного двигателя недаром занимала умы мыслителей того времени.
Своеобразным отражением энергетического кризиса являются многочисленные в то время попытки создать вечный двигатель. Видя кажущееся «самодвижение» воды и воздуха (реки, приливы — отливы, ветра), легко можно было представить, что хитроумная комбинация машин способна к вечному движению, а следовательно, и к постоянному совершению работы.
Естественно, что наибольшее число «изобретений» относилось к использованию энергии воды и воздуха. Среди них наиболее популярны комбинации спирального подъемника воды — архимедова винта и обычного водяного колеса, которые вращают друг друга; колесо, вращающееся под действием неуравновешенных грузов; и т. д. Попытки создания вечного двигателя крайне заманчивы. Они не прекращаются до сих пор, правда,
уже на других сочетаниях движущих сил. Еще в 1775 г. Парижская академия приняла решение не рассматривать утопических проектов вечных двигателей из-за невозможности их создания. Это — крупное достижение науки того времени, очень важна его гносеологическая роль. По сути оно означает отказ от самодвижения во всех формах, необходимость учета внешней накачки энергией всех преобразователей энергии. Не мешает напомнить, что идея самодвижения и саморазвития любых систем автоматически приводит, с энергетической точки зрения, и к возможности существования самоисточников энергии, т. е. вечных двигателей, чего, как известно, в природе не обнаружено.Выход из энергетического кризиса средневековья был найден с помощью приручения «движущей силы огня», использования перехода химической формы энергии в тепловую, применения силы сжатого пара. Это — третий этап развития энергетики человечества. И опять мы не знаем, когда была построена первая паровая машина. Может быть, это был эолопил Герона или одна из первых паровых пушек Архимеда. Хотя древние греки и были знакомы с действием паровых машин, но объяснения принципа их действия тогдашняя схоластическая наука дать не могла. Не была известна сущность происходящих при этом физических процессов (считалось, например, что воздух превращается в пар), а без этого создать серьезную, эффективно работающую машину было нельзя.
Только научная революция XVI–XVII вв., вызванная требованиями развивающихся капиталистических отношений, привела к возникновению опытной науки, сформулировавшей правила разработки и создания разнообразных энергетических движителей.
На стыке XVII и XVIII вв. были созданы первые длительно работающие паровые машины, вначале пригодные лишь для откачивания воды из шахт (одной из самых тяжелых задач того времени). Они были громоздкими и неэффективными, с к.п.д. не выше 0,3%! Фактически это были паровые насосы. Настоящая паровая машина непрерывного действия была разработана в Англии знаменитым изобретателем Джеймсом Уаттом во второй половине XVIII в. (Параллельно в России был разработан двухцилиндровый паровой двигатель умельцем-механиком с Урала Иваном Ползуновым, но со смертью автора изобретение было забыто.) В Англии, этой мастерской мира того времени, где две трети населения работали в промышленности, паровые машины распространились необычайно быстро; к началу XIX в., т. е. через 25 лет после изобретения Уатта, их насчитывалось более 1500, они заменяли работу 180 тыс. лошадей. За Англией поспешили континентальная Европа и Северная Америка. В России первая после двигателя И. Ползунова машина заработала на Урале в 1799 г. Паровая машина, по словам Энгельса, оказалась поистине интернациональным изобретением. И это неудивительно, так как она была единственным в то время средством решения проблемы энергетического кризиса. Паровые машины повышенного давления можно было поставить на колеса и получить самодвижущиеся по рельсам повозки; довольно быстро по рекам и внутренним водоемам пошли пароходы, а в 1838 г. Атлантический океан пересекли два парохода, использующие только паровую тягу. Таким образом, к середине XIX в. паровые машины практически везде пришли на смену естественным источникам энергии — воде и ветру. Наступил «золотой век пара», который, казалось бы, мог длиться очень долго. Но... чем больше возможностей, тем быстрее растут потребности. Быстрый количественный рост числа паровых машин, их непрерывные модификации (хорошая аналогия с ЭПЭР и ЭПИР в биологии) уже за хронологических полвека не смогли удовлетворять потребности в энергетических мощностях экспоненциально растущей экономики. Перечислим самые существенные недостатки паровых машин: низкий к.п.д. при увеличении числа и мощности машин приводил к громадному расходу топлива; передача движения от машины к станкам осуществлялась через целые системы трансмиссий, сложные и ненадежные; атмосфера городов с тысячами заводских дымовых труб становилась непригодной для жизни горожан.
В недрах XIX в. зрели новые способы преобразования и использования энергии, но только в XX в. электричество вступило в права основного энергодателя, энергопреобразователя и энергопереносчика. Существует рассказ о том, что когда Майкла Фарадея, открывшего явление электромагнитной индукции, спросили: «А зачем это надо?», он ответил: «Не знаю, но когда-нибудь вы это обложите налогом». Имелось в виду, что это явление будет широко применяться на практике. Но вряд ли и сам великий экспериментатор и все исследователи, изучавшие природу электрических и магнитных явлений, могли предвидеть, как широко войдет электричество в нашу экономику, в быт каждой семьи. Применение электричества резко повысило энергообеспеченность человечества, в том числе и удельную. Электрическая энергия имеет большие преимущества перед другими видами: она быстро и с малыми потерями передается на большие расстояния; может легко преобразовываться в другие виды энергии; к. п. д. электропреобразователей может быть очень высоким, вплоть до 100%. Источником ее может служить как энергия падающей воды, так и энергия органического топлива. Отметим, что около 80% получаемой в мире энергии, большая часть которой превращается в электрическую на огромных ТЭЦ и ГРЭС, производится на основе паровых турбин. Схема превращения энергии органического топлива (угля, нефти, газа, мазута) в электрическую энергию многоступенчата. Например, тепло сгорающего топлива нагревает воду в котле, вода превращается в пар высокого давления, он приводит в движение паровую турбину, турбина — ротор электрического генератора, находящийся в сильном магнитном поле, тоже создаваемом током.