Естественные технологии биологических систем
Шрифт:
Рис. 4. Основные типы пищеварения.
А— внеклеточное дистантное пищеварение; Б— внутриклеточное цитоплазматическое пищеварение; В— внутриклеточное вакуолярное, или вне-плазматическое, пищеварение, связанное с эндоцитоэом (фаго- и пиноцитозом); Г— мембранное пищеварение. 1 — внеклеточная среда; 2 — внутриклеточная среда; 3 — внутриклеточная пищеварительная вакуоль; 4— лизосома; 5— ядро; 6 — мембрана; 7 — ферменты; 8 —субстраты и продукты их гидролиза.
Вместе с тем целостное пищеварение не обеспечивает эффективного перехода от гидролиза к транспорту, так как резорбирующая мембрана и освобождающиеся в процессе гидролиза мономеры разделены значительным расстоянием и требуется определенное время, чтобы мономеры достигли поверхности всасывающей клетки.
2.3.2. Внутриклеточное пищеварение
Этим термином обозначаются случаи, когда не-расщепленные или частично расщепленные пищевые вещества проникают внутрь клетки, где подвергаются гидролизу ферментами цитоплазмы, не выделяемыми за пределы клетки. Внутриклеточное пищеварение распространено у простейших и наиболее примитивных многоклеточных организмов, например у губок и плоских червей. Как дополнительный механизм гидролиза пищевых веществ оно встречается у немертин, иглокожих, некоторых кольчатых червей и многих моллюсков. У высших позвоночных животных и человека оно выполняет главным образом защитные функции, например фагоцитоз.
Различаются два типа внутриклеточного пищеварения. Первый связан с транспортом небольших молекул через клеточные мембраны и последующим перевариванием ферментами цитоплазмы. Внутриклеточное пищеварение может также происходить в специальных внутриклеточных полостях — пищеварительных вакуолях, присутствующих постоянно или образующихся при фагоцитозе и пиноцитозе и исчезающих после расщепления захваченной пищи. Второй тип пищеварения в большинстве случаев связан с участием лизосом, которые содержат широкий набор гидролитических ферментов (фосфатаз, протеаз, глюкозидаз, липаз и др.) с оптимумом действия в кислой среде (pH 3.5—5.5). Пищевые структуры или пищевые растворы в околоклеточной среде вызывают впячивания плазматической мембраны, которые затем отшнуровываются и погружаются в цитоплазму, образуя пиноцитозные и фагоцитозные вакуоли. Соединяясь с последними, лизосомы образуют фагосомы, где происходит контакт ферментов с соответствующими субстратами. Образовавшиеся продукты гидролиза всасываются через мембраны фагосом. После завершения пищеварительного цикла остатки фагосом выбрасываются за пределы клетки путем экзоцитоза. Лизосомы играют также важную роль в расщеплении собственных структур клетки, которые используются в качестве пищевого материала либо данной клеткой, либо за ее пределами.
По своим механизмам внутриклеточное пищеварение может быть рассмотрено как сочетание микрополостного и мембранного гидролиза в пределах клетки. Действительно, при внутриклеточном пищеварении ферменты могут оказывать свой гидролитический эффект в цитоплазме клетки или в фагосоме, т.е. в среде, что свойственно полостному пищеварению, а также на внутренней поверхности фагосомной мембраны, что свойственно мембранному пищеварению.
Внутриклеточное пищеварение лимитировано проницаемостью мембраны и процессами эпдоцитоза, которые характеризуются небольшой скоростью и, по-видимому, не могут играть существенной роли в обеспечении пищевых потребностей высших организмов.
Тем не менее они могут способствовать проникновению в клетку некоторых уникальных веществ, в частности иммуноглобулинов.
Эндоцитозам приписывается важная роль в ассимиляции пищевых веществ в период раннего постнатального развития.
2.3.3. Мембранное (пристеночное, контактное) пищеварение
Мембранное пищеварение, открытое в конце 50-х гг., пространственно занимает промежуточное положение между внеклеточным и внутриклеточным и осуществляется ферментами, локализованными на структурах клеточной мембраны и ее дериватов (у высших животных и человека — на апикальной поверхности кишечных клеток). Активные центры ферментов ориентированы определенным образом по отношению к мембране и водной фазе. Свободная ориентация каталитических центров ферментов по отношению к субстратам невозможна. Глубоко расположенные связи, по-видимому, недоступны действию ферментов, осуществляющих мембранное пищеварение. Этим оно существенно отличается от полостного и внутриклеточного типов, если последнее происходит в фагосомах.
Мембранное пищеварение осуществляется как адсорбированными из полости тонкой кишки ферментами (преимущественно панкреатического происхождения), так и собственно кишечными, или мембранными, синтезированными в кишечных клетках и встроенными в состав их апикальной липопротеиновой мембраны (табл. 1). Ферменты, адсорбированные на структурах кишечной слизистой (главным образом в гликокаликсном пространстве), реализуют в основном промежуточные этапы гидролиза всех основных видов пищевых веществ. Собственно кишечные ферменты осуществляют преимущественно заключительные этапы расщепления пищевых биополимеров. По-видимому, адсорбированные ферменты связаны в основном со структурами гликокаликса (рис. 5), а собственно кишечные встроены в структуры плазматической мембраны кишечных клеток. Тем не менее на поверхности липопротеиновой мембраны могут адсорбироваться ферменты, поступающие в полость тонкой кишки с панкреатическим соком, а собственно кишечные ферменты, по крайней мере частично, могут включаться в гликокаликс.
Основные ферменты, реализующие мембранное пищеварение в тонкой кишке млекопитающих
Происхождение фермента | Фермент | КФ |
Адсорбированные панкреатические ферменты | Амилаза | 3.2.1.1 |
Липаза | 3.1.1.3 | |
Трипсин | 3.4.21.4 | |
Химотрипсин | 3.4.21.1 | |
Карбоксипептидаза А | 3.4.12.2 | |
Карбоксипептидаза В | 3.4.12.3 | |
Эластаза | 3.4.21.11 | |
Рибонуклеазэ | 3.1.4.22 | |
Собственно кишечные ферменты | Мальтаза | 3.2.1.20 |
Сахараза | 3.2.1.48 | |
Изомальтаза | 3.2.1.10 | |
Гамма-амилаза | 3.2.1.3 | |
Лактаза | 3.2.1.23 | |
Трегаяаза | 3.2.1.28 | |
Щелочная фосфатаза | 3.1.3.1 | |
Моноглицеридлипаза | 3.1.1.23 | |
Пептидазы | 3.4.11 - 15 | |
Аминопептидаза * | 3.4.11.2 | |
Дипептидиламинопепти- даза | 3.4.14.1 | |
Карбоксипептидаза | 3.4.12.4 | |
Энтерслептидаза | 3.4.21.9 | |
Гамма-глутамилтранспептидаза | 2.3.2.2 | |
Холестеролэстераза | 3.1.1.13 |
* Аминопептидаза М, аминопешчдаза N, аланинаминопептидаза.
Рис. 5. Упрощенная схема распределения адсорбированных ферментов на поверхности гликокаликса ( I), в гликокаликсном пространстве ( II) и на липопротеиновой мембране ( III) кишечной клетки.
1— полость тонкой кишки; 2— ферменты;3 — гликокаликс; 4— мембрана.
Рис. 6. Схема отделения апикального гликокаликса от липопротеииовой мембраны кишечной клетки.
1— агаровая реплика; 2— апикальный гликокаликс; 3— микровор-синки; 4— латеральный гликокаликс.
Рис. 7. Щеточная кайма кишечной клетки крысы.
А— продольный разрез апикальной зоны интактной клетки; виден гликокаликс на внешней (апикальной) и боковой (латеральной) поверхностях микроворсинок. В— продольный разрез апикальной зоны клетки после отделения агаровой реплики; гликокаликс на внешней поверхности микроворсинок отсутствует, видны неповрежденная липопротеиновая мембрана клетки и латеральный гликокаликс. 80 000х.
Рис. 8. Роль ферментно-транспортных комплексов в предотвращении конкуренции между мономерами на стадии всасывания.
А— конкуренция между мономерами за общий вход в транспортную систему; Б— конкуренция между финальными продуктами гидролиза за общий вход в транспортную систему; В— ферментно-транспортный комплекс: передача конечных продуктов гидролиза с фермента на вход в транспортную систему (без конкуренции). 1 — мономер; 2— димер; 3— фермент; 4— транспортная система; 5— мембрана.