Естествознание. Базовый уровень. 10 класс
Шрифт:
Масса атома определяется главным образом массой его ядра, которое состоит из двух видов частиц, называемых нуклонами (от лат. nucleus – ядро), имеющих почти одинаковую массу. Нуклоны бывают двух видов: положительно заряженные протоны и нейтральные нейтроны.
Вид атома с определённым зарядом ядра называют химическим элементом. Атом каждого элемента отличается от других числом протонов в атомном ядре, которое соответствует его порядковому номеру в Периодической системе элементов Д. И. Менделеева и числу электронов в электронной оболочке. Кроме того, число протонов определяет электрический заряд ядра, так как электрически нейтральные нейтроны не вносят в него вклада. Поэтому число протонов в ядре какого-либо атома называют его зарядовым числом.
Масса ядра определяется суммой масс составляющих его протонов и нейтронов и называется атомной массой. Поскольку масса атомов очень мала, её неудобно измерять непосредственно в граммах. Поэтому в практических целях используют величину, называемую массовым числом, которая равна числу всех входящих в ядро нуклонов. Масса одного протона или нейтрона, таким образом, принимается за единицу.
Может показаться, что каждый химический элемент должен всегда иметь определённое зарядовое число и определённую атомную массу. Однако это утверждение верно только в отношении зарядового числа. Ещё в начале XX в. было обнаружено, что некоторые элементы, проявляющие одинаковые свойства в химических реакциях, состоят из атомов, имеющих различную атомную массу. Атомы одного и того же элемента, имеющие различную массу, были названы изотопами. Встречающиеся в природе элементы чаще всего являются смесью нескольких изотопов, один из которых является преобладающим. Атомы всех изотопов одного элемента имеют одинаковый заряд ядра и, соответственно, занимают одно и то же место в периодической системе химических элементов. Различие между ними заключается в числе содержащихся в ядре нейтронов.
Ядро атома гелия чаще всего содержит два нейтрона, но встречаются изотопы, число нейтронов в ядре которых равно одному или трём. Кислород в природе может существовать в виде трёх изотопов с восемью, девятью или десятью нейтронами. При этом число протонов в ядре атома кислорода и, следовательно, его зарядовое число и атомный номер всегда равны восьми. Водород является первым элементом периодической системы элементов. Ядро его атома содержит всего один протон и чаще всего вообще не содержит нейтронов. Такой изотоп водорода называют протий. Однако в природном водороде содержится почти 0,02 % изотопа, называемого дейтерием и содержащего один нейтрон (рис. 115, А). Соответственно, атомная масса дейтерия равна двум.
Рассмотренные изотопы гелия, кислорода и водорода называют стабильными, так как они устойчивы и не подвергаются самопроизвольному распаду. К настоящему времени в природе обнаружено 270 стабильных изотопов. Кроме них существуют и нестабильные изотопы, ядро которых неустойчиво и подвержено постоянному распаду. Эти изотопы чаще всего встречаются у тяжёлых элементов, т. е. элементов с большой атомной массой. Нестабильные изотопы часто получают искусственно при помощи ядерных реакций. Таким способом можно получить, например, нестабильный изотоп водорода, в ядре которого находятся два нейтрона. Этот изотоп водорода называется тритием из-за того, что его атомная масса равна трём (один протон плюс два нейтрона) (см. рис. 115, А).
Рис. 115. Состав атомных ядер: А – водорода; Б – углерода (красные шарики – протоны, голубые – нейтроны)
Большинство природных химических элементов существуют в виде нескольких устойчивых изотопов (рис. 115, Б). Например, железо имеет четыре стабильных изотопа, ртуть – семь, а олово – десять. Поэтому атомная масса элементов выражается дробным числом. Так, хлор, встречающийся в природе, на 76,5 % состоит из изотопа с атомной массой, равной 35, и на 24,5 % – из изотопа с массой 37. Поэтому средняя атомная масса хлора равна приблизительно 35,5.
Как следует из самого названия, нестабильные изотопы не могут существовать в течение неограниченного периода времени и постоянно распадаются. Скорость распада ядер этих изотопов измеряется их периодом полураспада – временем, за которое первоначальное количество частиц уменьшается вдвое. У большинства нестабильных изотопов этот период составляет не более нескольких секунд, хотя известны изотопы с периодом
полураспада в миллионы лет. Во время распада ядра таких атомов испускают радиоактивное излучение. Таким образом, можно сказать, что все неустойчивые изотопы обладают радиоактивностью (рис. 116).Химические свойства элементов, т. е. их способность вступать в химические реакции, не зависят от числа нейтронов в ядре атома, а связаны со строением его электронной оболочки. Поэтому в химическом отношении все изотопы одного элемента являются абсолютно одинаковыми. Эту особенность используют во многих областях науки, техники и медицины. Таким образом можно, например, судить о превращениях какого-либо химического вещества в организме и о местах его включения в клетки и ткани. Можно синтезировать биологически активное вещество, включив в него неустойчивый радиоактивный изотоп какого-либо атома, например углерода или азота. В химическом и биологическом отношении это вещество ничем не будет отличаться от такого же вещества, не содержащего радиоактивного изотопа. В какие бы другие соединения это вещество ни превращалось, как бы ни изменялось строение его молекулы, радиоактивное излучение нестабильного атома всегда будет сохраняться. Если затем ввести это вещество в кровь, то, измеряя испускаемое этим изотопом слабое, безопасное для организма, радиоактивное излучение в различных участках человеческого тела, можно судить о том, где и в каких количествах накапливается в организме это вещество или продукты его обмена. Постепенно эти продукты или само вещество будут выводиться из организма, и по уменьшению радиоактивности можно определить скорость их выведения. Такой метод получил название исследования с применением «меченых атомов».
Рис. 116. Радиоактивный металл кюрий светится в темноте, испуская большое количество ядер гелия
При знакомстве со строением атомного ядра возникает естественный вопрос: с помощью каких сил нуклоны удерживаются друг около друга? Мы знаем, что протоны и электроны, будучи противоположно заряженными, взаимно притягиваются, и именно это электрическое поле определяет устойчивость атома в целом. Но поскольку все протоны заряжены одинаково положительно, они должны отталкиваться друг от друга и ядро должно немедленно разрушиться. Нейтральные нейтроны не могут вмешиваться в этот процесс, а сила гравитации настолько мала по сравнению с электромагнитной, что никак не может препятствовать этому распаду. Почему же ядро может существовать в неизменном виде миллиарды лет?
Оказывается, что в природе, помимо двух уже известных нам фундаментальных взаимодействий – гравитационного и электромагнитного, существуют ещё два типа взаимодействий, называемых сильным и слабым. Первое из них удерживает нуклоны внутри атомного ядра, а второе обнаруживается при превращениях элементарных частиц. Главной особенностью сильного взаимодействия, отличающей его от гравитационного и электромагнитного взаимодействий, является то, что оно действует только на очень малых расстояниях, соизмеримых с размером нуклонов. Эти расстояния составляют около 1015 м. На таких расстояниях эта сила становится столь огромной, что по сравнению с ней можно пренебречь всеми электромагнитными, не говоря уже о гравитационных, взаимодействиями между нуклонами. Слабое взаимодействие тоже распространяется только на очень малые расстояния, но превышает оно только силу гравитации.
1. Что происходит с атомом, если он теряет один или несколько электронов?
2. Почему атомы невозможно увидеть с помощью светового микроскопа?
3. Какими частицами определяется масса атомного ядра, а какими – его заряд?
4. Что такое период полураспада атомного ядра?
5. Какие виды взаимодействия осуществляются внутри атомного ядра и элементарных частиц?
Подберите эпиграф к данному параграфу.
§ 46 Ядерный распад и элементарные частицы