Чтение онлайн

ЖАНРЫ

Естествознание. Базовый уровень. 11 класс

Титов Сергей Алексеевич

Шрифт:

Вторую стадию фотосинтеза называют темновой, потому что для её осуществления свет не требуется. Не нуждается она и в ферментах клеточных мембран, поэтому протекает прямо в строме [11] хлоропласта. На этой стадии энергия, накопленная в макроэргических связях АТФ и в связанном водороде, используется для синтеза глюкозы из водорода и углекислого газа. Уравнение темновой стадии выглядит так:

6CO2 + 24H -> C6H12O6 + 6H2O,

11

Строма – это внутреннее пространство хлоропласта.

а общее уравнение

фотосинтеза в упрощённой форме без учёта веществ – носителей энергии – имеет такой вид:

6CO2 + 6H2O -> C6H12O6 + 6O2.

Сравним это уравнение с последним уравнением предыдущего параграфа. Легко заметить, что оно полностью соответствует ему с той лишь разницей, что записано в обратном порядке. Таким образом, фотосинтез как пример пластического обмена и энергетический обмен образуют в природе замкнутый цикл превращения энергии.

Рис. 61. Сообщества микроорганизмов чёрных курильщиков представлены хемотрофными бактериями, это основные продуценты на дне океанов. Чёрные курильщики – это действующие на дне океанов многочисленные источники, из которых в океаны под давлением в сотни атмосфер поступает высокоминерализованная горячая вода.

Солнечная энергия расходуется на образование химических связей в молекуле глюкозы, а затем при расщеплении этих связей энергия вновь освобождается, только уже не в виде энергии света, а в виде макроэргических связей АТФ. Разумеется, не вся энергия солнечного света, падающего на землю, запасается в АТФ. В соответствии со вторым началом термодинамики значительная её часть рассеивается в виде тепла. И всё же интенсивность фотосинтеза такова, что 1 м2 листьев в течение часа образует около 1 г глюкозы.

Роль фотосинтеза на Земле уникальна. Это единственный процесс, который поставляет Земле свободную энергию за счёт внешнего источника. В результате фотосинтеза все живые организмы, обитающие на нашей планете, получают энергию в виде пищевых веществ и кислород, необходимый большинству этих организмов для дыхания. В течение года в результате фотосинтеза на Земле образуется около 150 млрд т органических веществ и при этом выделяется почти 200 млн т кислорода. При этом снижается количество углекислого газа в атмосфере, что препятствует перегреву Земли в результате парникового эффекта. Большую часть фотосинтеза осуществляют леса, поэтому их интенсивная вырубка представляет серьёзную угрозу для существования жизни на нашей планете.

Хемосинтез

Другой группой автотрофных организмов являются хемосинтетики, использующие в качестве источника энергии окислительно-восстановительные реакции неорганических соединений. Хемосинтетиками могут быть только бактерии: железобактерии окисляют двухвалентное железо до трёхвалентного, серобактерии превращают сероводород в молекулярную серу и серную кислоту, нитрифицирующие бактерии окисляют образующийся в результате гниения различных органических веществ аммиак до азотистой и азотной кислот, соли которых могут использовать растения.

Роль хемосинтетиков в жизни нашей планеты чрезвычайно велика, так как они участвуют в круговороте важнейших химических элементов, без которых невозможно существование жизни (рис. 61).

Проверьте свои знания

1. Почему постоянный зелёный свет губителен для растений?

2. Что такое фотолиз воды?

3. Где протекает световая фаза фотосинтеза?

4. Из какого соединения образуется выделяемый при фотосинтезе кислород?

5. На какие группы делят бактерии-хемосинтетики?

Задания

1. Вспомните материал из учебника 10 класса, где рассказывалось о том, как энергия света зависит от длины его волны, и объясните, почему осенью хлоропласты, содержащие зелёный хлорофилл, сменяются хромопластами, содержащими красный и жёлтый пигменты.

2. Вспомните, какие пигменты используют для фотосинтеза самые глубоководные растения нашей планеты. Как называются эти растения? Почему их пигменты такого цвета?

3. Используя дополнительные источники информации и знания, полученные из курса биологии, расскажите о значении этих растений в природе и жизни человека.

4. Используя дополнительные источники информации, подготовьте сообщение или презентацию на тему

«Бактерии-хемосинтетики и их роль в круговороте веществ в природе».

§ 24 Генетический код и биосинтез белка

Двойной спиралью ДНК Сильна, хитра, стройна, ловка.«Белок создать? Давно пора!И,словно тень легка,Сверкнув, умчалась из ядра витая РНК.К рибосоме стремись, РНК,Без тебя не видать нам белка.Коль поспеет молекула в срок,Значит, клетка получит белок.В рибосоме, могучие с виду,В ряд построились нуклеотиды,И идут, как конвейера ленты,В рибосому ферменты, ферменты…Скоро пептидные связи замкнутся,Скоро в белке силы жизни проснутся,Вырастет клетка большая, и сноваКлетка к делению будет готова.

Мы знаем, что белки определяют жизнедеятельность любой клетки и выполняют в ней самые разнообразные функции. Но белки – это крайне недолговечные соединения: самые устойчивые из них существуют не более нескольких месяцев. Поэтому белковые молекулы нужно постоянно обновлять. Кроме того, в зависимости от возраста, состояния и вида деятельности организму требуются разные белки в разных соотношениях. По этой причине в каждой клетке постоянно происходит синтез новых молекул белка. При этом необходимо, чтобы структура белка, т. е. последовательность входящих в него аминокислот, всегда в точности соответствовала требуемой, ведь малейшая ошибка может иметь роковые последствия. Так, если в молекуле гемоглобина, состоящей из 574 аминокислот, заменить всего две, у человека появится тяжёлое наследственное заболевание – серповидно-клеточная анемия, которая обычно приводит к смерти в раннем возрасте. Поэтому ясно, что в клетке должно находиться хранилище, содержащее точную и надёжную информацию о структуре всех белков, которые в принципе могут быть синтезированы в организме.

Генетический код

Таким хранилищем, как мы уже знаем, являются молекулы ДНК. Участок молекулы ДНК, в котором закодирована информация о структуре одной молекулы белка, называют геном. Соответствие последовательности нуклеотидов в ДНК последовательности аминокислот в соответствующем ей белке называется генетическим кодом.

Рис. 62. Таблица генетического кода (РНК)

Так как число существующих в организме типов белков значительно больше, чем число молекул ДНК в клетке, то в каждой молекуле ДНК, т. е. в каждой хромосоме, находится множество генов.

Рассмотрим организацию генетического кода (рис. 62). Так как в ДНК существует всего 4 вида нуклеотидов, а число типов аминокислот, образующих белки, равно двадцати, то очевидно, что одна аминокислота не может определяться одним нуклеотидом. Посмотрим, что было бы, если бы конкретной аминокислоте соответствовала бы пара нуклеотидов. Из четырёх нуклеотидов можно составить 4·4 =16 разных пар, что для 20 аминокислот явно недостаточно. Посчитаем, сколько вариантов комбинаций можно получить, используя сочетания по три нуклеотида: 4·4·4 = 64. Для имеющихся типов аминокислот это слишком много, но, как говорится, запас карман не тянет. Оказывается, генетический код устроен именно так: каждой последовательности из трёх нуклеотидов, называемой триплетом или кодоном, соответствует единственная определённая аминокислота. Но поскольку триплетов больше, чем аминокислот, то обратное утверждение неверно: одна аминокислота может кодироваться более чем одним триплетом. Существуют всего две аминокислоты, каждой из которых соответствует единственный триплет, остальные могут кодироваться двумя, четырьмя, а иногда и шестью разными триплетами. Часто, для того чтобы узнать, какую аминокислоту кодирует данный триплет, достаточно знать только его первые два нуклеотида из трёх. Например, если мы имеем последовательность нуклеотидов «цитозин – гуанин» (ЦТ…), то можем быть уверены, что они соответствуют аминокислоте аланину, независимо от того, какой нуклеотид находится на третьем месте.

Поделиться с друзьями: