Эйнштейн (Жизнь, Смерть, Бессмертие)
Шрифт:
2 Эйнштейн, 4, 270.
Что именно в классической термодинамике придает ей такую исключительную устойчивость?
Классические законы, определяющие ускорения, скорости и положения молекул в каждый момент, иначе говоря, законы механики Ньютона, уступили место другим, более точным законам. Незыблемым остается положение о переходе термодинамических систем в достаточно боль
104
ших пространственных и временных областях из менее вероятных состояний в более вероятные и выведение этой закономерности из большого числа беспорядочных движений отдельных молекул. Могут измениться законы, управляющие этими движениями, но связь сложных необратимых, вероятностных, статистических процессов с движением частиц остается незыблемой.
Теория
"Предубеждение этих ученых против атомной теории можно, несомненно, отнести за счет их позитивистской философской установки. Это интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже ученым со смелым мышлением и с тонкой интуицией" [3].
3 Эйнштейн, 4, 276.
Могут ли, спрашивает Эйнштейн, факты сами по себе без теоретических конструкций привести к научному представлению о действительности? Под теоретической конструкцией подразумеваются те или иные гипотезы о непосредствепно ненаблюдаемых атомах и молекулах и об их движениях. Для Маха подобное вторжение в непосредственно не наблюдаемую область "метафизика". Для Оствальда задача ограничивается описанием макроскопически наблюдаемых переходов энергии из одной формы в другую без проникновения в закулисный мир движущихся частиц материи. Для Эйнштейна именно в таком проникновении и состоит задача познания физических процессов. Описание непосредственно наблюдаемых фактов (в данном случае - макроскопических процессов) не дает однозначной теории. Непосредственно связанные с эмпирическим материалом понятия вовсе не вытекают однозначным образом из объективной реальности. Их "очевидность" - иллюзия, возникшая от длительного применения.
105
Фотоны
Не являются ли лучи света очень малыми телами, испускаемыми светящимся веществом?
Ньютон
В предыдущей главе говорилось о "классическом идеале" науки, о картине мира, которая может отличаться от ньютоновой по характеру законов, движения тел, но принадлежит к тому же типу: ее исходными понятиями служат относительное движение и взаимодействие частиц и состоящих из них тел. Столкновение механики Ньютона с термодинамикой окончилось благополучно и для механики Ньютона, и для "классического идеала" вообще. Механика Ньютона сохранила свои позиции за кулисами статистических законов термодинамики. Это, впрочем, еще не гарантировало абсолютной точности ньютонового варианта "классического идеала". Следующие столкновения (с электродинамикой!) заставили перейти к иным вариантам.
Теория относительности была освобождением "классического идеала" от противоречий и произвольных допущений, она приносила ему "внешнее оправдание" и "внутреннее совершенство" ценой перехода от ньютонового варианта к новому. Эта схема будет проиллюстрирована при изложении работ Эйнштейна 1905 г. (специальная теория относительности) и 1916 г. (общая теория относительности). Но указанная программа привела и к более радикальному результату. Она поставила под сомнение не только ньютонов вариант "классического идеала", но и самый этот идеал - картину мира, в которой наиболее элементарными понятиями служат перемещение и взаимодействие тождественных себе тел. С таким результатом теории относительности мы столкнемся в связи с работами Эйнштейна в тридцатые пятидесятые годы.
106
Указанный более радикальный результат - пересмотр "классического идеала" - гораздо явственнее и скорее, чем в теории относительности, наметился при развитии идеи, выдвинутой Эйнштейном также
в 1905 г., - идеи квантов света, или фотонов. Первоначально речь шла также о торжестве "классического идеала". Но развитие идей, высказанных Эйнштейном в теории фотонов, в конце концов стало угрожать "классическому идеалу" в целом. Когда же принципы теории относительности и принципы квантовой теории света объединились, картина взаимного перемещения тождественных себе тел потеряла свой титул исходного, наиболее глубокого представления о мире.В 1900 г. Макс Планк разрешил некоторые, очень тяжелые, противоречия теории излучения, предположив, что энергия электромагнитных волн, т.е. света, излучается и поглощается дискретными, далее неделимыми количествами, квантами.
Эйнштейн в 1905 г. выдвинул теорию, согласно которой свет не только излучается и поглощается, но и состоит из дискретных, далее неделимых порций, квантов света. Они представляют собой частицы, которые движутся в пустоте со скоростью 300 000 километров в секунду. Впоследствии (в двадцатые годы) эти частицы получили название фотонов.
Существование фотонов - квантов света - само по себе не следует из существования неделимых порций излучения и поглощения. Эйнштейн разъяснил соотношение гипотезы фотонов и теории Планка следующим сравнением:
"Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте". Филипп Франк развил эту аналогию [1]. Чтобы проверить, состоит ли пиво в бочонке из неделимых далее частей, разольем его из бочонка в некоторое число сосудов, например в десять сосудов. Разливать мы будем пиво совершенно произвольным образом, предоставляя случаю определить, сколько попадет в каждый сосуд. Измерим, сколько пива ока
107
залось в каждом сосуде, и потом выльем его обратно в бочонок. Повторим такую операцию некоторое большое число раз. Если пиво не состоит из неделимых частей, среднее количество пива в каждом сосуде будет одно и то же для всех этих сосудов. Если же пиво состоит из неделимых частей, между сосудами появятся различия в среднем количестве пива. Представим себе в качестве крайнего случая, что бочонок содержит только одну неделимую порцию пива. Тогда вся эта порция будет вылита каждый раз только в один сосуд и различие между содержимым сосудов будет наибольшим: в одном сосуде окажется все пиво из бочонка, остальные сосуды останутся пустыми. Если бочонок состоит из двух, трех и так далее неделимых порций, отклонения от среднего значения станут все меньше. Таким образом, по величине отклонений от среднего значения, т.е. по величине флюктуаций, можно судить о величине неделимых порций пива.
1 См.: Frank, 72.
Перейдем теперь к изучению электромагнитных волн. Пусть они заполняют ограниченный стенками "бочонок" - некоторый объем пространства, состоящий из отдельных клеток. Можно ли разделить энергию этих волн на сколь угодно большое число частей или мы натолкнемся на неделимые далее "порции"? И если излученное электромагнитное поле дискретно, то какова величина его наименьших "порций"?
На эти вопросы можно ответить, измеряя отклонения количества энергии в клетках от среднего значения - вариации этого количества при переходе от одной клетки к другой. Если минимальные "порции" велики, то и вариации велики; если "порции" малы, то и вариации малы.
Измерения дают следующий результат. В фиолетовом свете (более высокие частоты электромагнитных колебаний), заполняющем некоторый объем, мы встречаемся со сравнительно большими вариациями количеств энергии в различных клетках. В красном свете (менее высокие частоты колебаний) флюктуации количества энергии, т.е. вариации при переходе из одной клетки в другую, меньше. Отсюда следует, что фиолетовый свет (колебания с большей частотой) состоит из более крупных неделимых порций энергии, чем красный свет (колебания с меньшей частотой).