Чтение онлайн

ЖАНРЫ

Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
Шрифт:

Если вас не удовлетворит и это доказательство, то можно придумать искусственный пример, когда равновесие обеспечи­вается устройством, по которому молекулы каждого газа бьют с обеих сторон. Предположим, что сквозь поршень проходит короткий стержень, на концах которого насажено по шару. Стержень может двигаться сквозь поршень без трения. По каж­дому из шаров со всех сторон бьют молекулы одного сорта. Пусть масса нашего устройства равна m, а массы молекул газа, как и раньше, равны m1и m2. В результате столкновений с молекулами первого сорта кинетическая энергия тела массы mравна среднему значению 1/2 mtv21(мы уже доказали это). Точно так же, столкновения с молекулами второго сорта зас­тавляют тело иметь кинетическую энергию, равную среднему

значению 1/2mzv22. Если газы находятся в тепловом равнове­сии, то кинетические энергии обоих шаров должны быть рав­ны. Таким образом, результат, доказанный для случая смеси газов, можно немедленно обобщить на случай двух разных газов при одинаковой температуре.

Итак, если два газа имеют одинаковую температуру, то средние кинетические энергии молекул этих газов в системе центра масс равны.

Средняя кинетическая энергия молекул — это свойство только «температуры». А будучи свойством «температуры», а не газа, она может служить определением температуры. Средняя кинетическая энергия молекулы, таким образом, есть некото­рая функция температуры. Но кто нам подскажет, по какой шкале отсчитывать температуру? Мы можем сами определить шкалу температуры так, что средняя энергия будет пропор­циональна температуре. Лучше всего для этого назвать «тем­пературой» саму среднюю энергию. Это была бы самая простая функция, но, к несчастью, эту шкалу уже выбрали иначе и вместо того, чтобы назвать энергию молекулы просто «темпе­ратурой», используют постоянный множитель, связывающий среднюю энергию молекулы и градус абсолютной температу­ры, или градус Кельвина. Этот множитель: k=1,38·10– 23 дж на каждый градус Кельвина. Таким образом, если абсо­лютная температура газа равна Т, то средняя кинетическая энергия молекулы равна 3/2kT (множитель 3/2 введен только для удобства, благодаря чему исчезнут множители в других формулах).

Заметим, что кинетическая энергия, связанная с состав­ляющей движения в любом направлении, равна только 1/2kТ. Три независимых направления движения доводят ее до 3/2kT.

§ 5. Закон идеального газа

Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно про­изведению полного числа атомов на универсальную постоян­ную k и температуру:

PV=NkT. (39.22)

Следовательно, при одинаковых температуре, давлении и объеме число атомов строго определено — это тоже универ­сальная постоянная! Таким образом, из законов Ньютона следует, что в равных объемах любых газов при одинаковых температуре и давлении содержится равное число молекул. Вот какой неожиданный вывод!

На практике, когда имеешь дело с молекулами, приходится оперировать большими числами, поэтому химики произвольно выбрали число, очень большое число, и придумали ему специ­альное название. Они назвали его моль. Моль — это очень искусственное число. Почему химики не приняли за единицу 1024, чтобы вышло круглое число,— это вопрос исторический.

Случилось так, что они для удобства выбрали стандарт­ное число N0=6,02·1023 объектов и назвали это число молем объектов. После этого, вместо того чтобы измерять число молекул в штуках, они измеряют их в молях. Можно написать число молей (выражая их через N0) и умножить его на число атомов в моле, потом умножить на kT, а затем, если захотим, выделить произведение числа атомов в моле на k, тогда получит­ся молярное значение k; для этой величины выделим особую букву R. Молярное значение k равно 8,317 дж: R=N0k=8,317дж/молъ·°К– 1. Таким образом мы нашли газовый закон, выраженный в виде произведения числа молей (его обозначают буквой N) на RT, или в виде произведения числа атомов на kT:

PV=NRT. (39.23)

Смысл тот же самый, только единицы измерения разные. В качестве единицы мы используем 1, а химики используют 6·1023!

Сделаем еще одно замечание по поводу газового закона; оно касается вещей более сложных, чем одноатомные молекулы. Пока мы имели дело только с движением одноатомного газа в центре масс. А что если при этом учесть действие сил? Рас­смотрим сначала случай, когда поршень удерживается гори­зонтально расположенной пружинкой, на которую действует сила. Взаимная встряска атомов и поршня в каждый данный момент, конечно, не зависит от положения

поршня. Условия равновесия остаются прежними. Независимо от того, где на­ходится поршень, от него требуется только, чтобы скорость его движения была такой, чтобы он получал от молекул столь­ко же энергии, сколько отдавал им. Наличие пружинки не меняет дела. Скорость, с которой движется поршень, в среднем та же. Таким образом, наша теорема о том, что средняя кине­тическая энергия в одном направлении равна 1/2kT, справед­лива независимо от того, есть силы или их нет.

Рассмотрим, например, двухатомную молекулу, состав­ленную из атомов с массами mАи mB. Нам удалось доказать, что движение в центре масс части А и части В таково, что <1/2mAv2A>=<1/2mBv2B> = 3/2kT. Но как это может быть, если от­дельные части связаны друг с другом? Хотя они и связаны меж­ду собой, но обмен энергией при взаимных вращениях, изме­нении расстояния и соударениях с другими молекулами за­висит только от того, как быстро они движутся. Только этим определяется обмен энергией при соударениях. Сила в каждый отдельный момент не имеет никакого значения. Следовательно, даже если между отдельными частями молекулы действуют силы, верен тот же принцип.

Докажем, наконец, что газовый закон справедлив и в том случае, когда внутреннее движение не учитывается. До сих пор нам не надо было включать внутреннее движение. Мы просто рассматривали одноатомный газ. Но теперь мы покажем, что скорость центра масс любого объекта, который можно рассматривать как тело массы М, равна

1/2Mv2ц..м.=3/2kT. (39.24)

Иначе говоря, можно рассматривать как отдельные части, так и всю молекулу в целом! Посмотрим, почему это можно делать: масса двухатомной молекулы равна М=mА+mB, а скорость центра масс равна vц.м. =(mAvA+mBvB)/M. Нам нужно теперь определить <v2ц.м.>. Если возвести в квадрат vц.м., то получится

Умножив это на 1I2M и усреднив, получим

[Мы воспользовались тем, что (mA+mB)/М=1.] А чему равно <vA·vB>? (Хорошо бы, чтобы это было равно нулю!) Чтобы найти это среднее, используем наше предположение, что относитель­ная скорость w=vA– vb не предпочитает какое-то одно опреде­ленное направление остальным, т. е. средняя составляющая вдоль любого направления равна нулю. Мы предполагаем, следовательно, что

<w·vц.м.>=0.

Но что такое w·vц.м.? Это скалярное произведение, равное

Далее, поскольку <,mAv2A>= <mBv2B>, то первый и последний члены взаимно уничтожаются, и мы получаем

Поделиться с друзьями: