Философские проблемы развития искусственного интеллекта
Шрифт:
Эти теоретические рассуждения подтверждаются и практикой создания интеллектуальных программ. Например, типична история машинного перевода, возможности которого еще несколько десятилетий считались значительно превосходящими возможности переводчика-человека. Но на практике, несмотря на немыслимые объёмы информации, которые способна хранить машина, перевод в лучшем случае настолько стилистически «коряв» и уродлив, что «машинный перевод» стал своеобразной темой комедийного интернет-искусства. Любому хорошему переводчику известно, что для настоящего перевода (даже технического) мало словаря и грамматики. Тут еще нужны знания в той области, к которой относится текст – переводчик должен понимать, о чём в тексте идёт речь. Т. е. синтаксис без семантики не даёт возможности решать большую часть интеллектуальных задач, доступных разуму человека.
Поэтому, для разработчиков современных интеллектуальных программ тест Тьюринга не стал универсальным критерием их успеха. Зато получил огромное распространение «тест Тьюринга наоборот» – назойливая CAPTCHA [1] .
Как мы видим, поиск возможности создания искусственного интеллекта в любом случае упирается в вопрос: что такое разум?
В 1963 г. А. Ньюэлл
1
Completely Automated Public Turing test to tell Computers and Humans Apart – тест, по замыслу разработчиков, позволяющий программе определить, кем является пользователь системы: человеком или программой. Впрочем, автору этих строк неизвестна ни одна «капча», которую с высокой вероятностью опознать человек, а ни одна программа не смогла бы.
Этот подход подвергся критике со стороны философа Х. Дрейфуса. Суть его возражений в следующем:
• знание человека о мире состоит не только и не столько из объективных знаний о мире, сколько из нашего субьективного отношения к нему и склонности воспринимать и интерпретировать события так или иначе. Даже если мы используем символическую систему для выражения наших мыслей, мысли всё равно формируются во многом под воздействием бессознательных факторов. Следовательно, рассмотрение разума может как устройства, оперирующего информацией в соответствии с формальными правилами, недостаточно для понимания сущности разума и создания искусственного интеллекта;
• не всё знание и не все задачи могут быть формализованы. Значительная часть восприятия человека не может быть адекватно выражена в символах. Следовательно, искусственный интеллект, построенный как символическая система, сможет решать лишь небольшой круг формализуемых задач, не являясь разумом.
Практика создания искусственного интеллекта подтвердила правоту скептицизма Дрейфуса. Современные нейрокомпьютеры способны эффективно решать многие задачи, но до возможностей человеческого разума им бесконечно далеко. Таким образом, сведение разума к оперированию символами по формальным правилам не привело к пониманию его сущности.
Хотя качественного прорыва в создании сильного искусственного интеллекта не произошло, количественно вычислительные возможности ЭВМ возрастали экспоненциально, и в данный момент сложность современных ЭВМ неумолимо приближается к сложности мозга человека. Возможно ли, что количественный рост сложности вычислительных систем приведёт к их качественному скачку?
В 1993 г. математик и писатель В. Виндж предложил концепцию, описывающую последствия возникновения искусственного интеллекта, превосходящего по вычислительным возможностям человеческий разум. С того момента, как искусственный интеллект будет открывать новое знание быстрее человека, искусственный интеллект сможет создавать всё более и более совершенные вычислительные машины, которые будут ускорять рост знания в ещё большей степени, т. е. процесс будет нарастать как снежный ком, становясь недоступным пониманию человека. После этого развитие искусственного интеллекта станет настолько стремительным, что даже самые приблизительные прогнозы о том, что произойдёт дальше, теряют смысл. Виндж назвал этот момент «технологической сингулярностью».
Технологическая сингулярность характеризуется появлением нового вида знания – т. н. машинного знания, т. е. знания, доступного лишь машине. Как это может выглядеть? Например, как математическая теорема, доказанная машиной. Первая крупная математическая теорема, доказанная с помощью компьютера, – теорема о четырех красках. Ее формулировка элементарна: для того чтобы раскрасить географическую карту так, чтобы никакие два граничащих региона не были одного цвета, достаточно всего четырех разных красок. Два региона считаются граничащими, если они имеют протяженную границу, то есть состоящую больше чем из одной точки. Доказательство теоремы о четырех красках – прецедент использования компьютера при решении классических математических задач. В то же время оно примечательно своей длиной и сложностью. Даже после применения компьютера, позволившего значительно сократить вычисления, текст доказательства элементарно формулируемого утверждения имеет астрономическую длину. Нетрудно представить себе появление такой теоремы, доказательство которой будет слишком длинным, для того, чтобы человеческой жизни хватило на его проверку. И тогда развитие знания и получение его плодов окажутся прерогативой искусственного разума.
Насколько вопрос создания сильного искусственного интеллекта является на данный момент актуальным? То, что интерес к данной проблеме сохраняется, видно хотя бы по той бурной дискуссии, которую вызвали публикации Р. Пенроуза. Опираясь на теорему К. Геделя о неполноте формальных систем, он обосновывал вывод о принципиальной невозможности создания машинных алгоритмов, способных имитировать во всем объеме интеллектуальные способности человека. Но нельзя не признать, что вопрос создания искусственного мышления, равного человеческому, больше не будоражит умы и воображение людей так, как это было в середине XX в. Снижение остроты интереса к проблеме создания сильного искусственного интеллекта человеческого уровня объясняют недостаточным пониманием природы человеческого разума. При этом, однако, обычно неявно предполагают,
что механизм человеческого мышления в принципе может быть прояснен и представлен в виде некоторого алгоритма, хотя решение этой задачи отодвигается на неопределенное будущее. Вполне возможно такое положение дел, что природа человеческого интеллекта такова, что «прояснить» его механизмы, свести деятельность интеллекта к некоторому набору «функций» или «операций», невозможно в принципе. Но всё же плоды создания сильного искусственного интеллекта слишком сладко манят современных учёных и инженеров. Ведь создание сильного искусственного интеллекта позволило бы сразу решить практически неограниченное число прикладных задач – поскольку не нужно было бы каждый раз заново разрабатывать «интеллектуальные» программы для решения очередной задачи: подлинно «интеллектуальная» машина была бы способна самостоятельно найти эффективный путь решения любой (или почти любой) поставленной перед ней задачи. Ведь именно эту способность – находить решения (и ставить сами задачи) самостоятельно мы, собственно, и называем интеллектом.Но наиболее важным значением философских проблем искусственного интеллекта представляется не создание пусть и весьма совершенных алгоритмов для решения практических задач, а те новые горизонты в понимании природы и сущности сознания, которые открываются в процессе решения вопросов создания искусственного интеллекта. Таким образом, философия искусственного интеллекта в полной мере следует максиме Сократа «познай самого себя».
Ученое сообщество рассуждает о сроках появления умных машин и сходится в следующем: развитие технологий безусловно окажет сильное влияние на общество, экономику и отношения между людьми в будущем. Уже сейчас раздаются призывы обдумать этические принципы разработки искусственного интеллекта, удостоверившись в том, что искусственный интеллект будет развиваться только в безопасном для людей направлении. И все-таки стоит ли человеку опасаться искусственного разума?
Прежде чем начать рассуждать о проблемах создания искусственного интеллекта, его влиянии на человека и общество, попробуем разобраться, что мы понимаем под ним. Итак, что же такое искусственный разум и почему его так многие опасаются?
Ученые не могут конкретно выразить суть интеллекта в каком-то одном определении. В начале 80-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта. Искусственный интеллект – это область информатики, которая занимается разработкой интеллектуальных компьютерных систем, то есть систем, обладающих возможностями, которые мы традиционно связываем с человеческим разумом, – понимание языка, обучение, способность рассуждать, решать проблемы и т. д. На наш взгляд искусственный интеллект – это не какой-то определенный компьютер или робот-человек, а это целая научная область, целью которой является разработка способов создания так называемых машин, автоматов или роботов, которые бы обладали свойством человеческого интеллекта.
Несмотря на последние достижения в области искусственного интеллекта, до появления разумных машино-существ еще далеко, признают ученые и специалисты. Ведь в создании данного мощного искусственного интеллекта существует огромное количество проблем: этических, психологических и даже юридических и т. д.
Как известно, изобретение искусственного интеллекта связывают с созданием нейронных сетей. Нейронные сети – это одно из направлений исследований в области искусственного интеллекта, основанное на моделировании биологических процессов, которые происходят в человеческом мозгу. Именно им мы обязаны появлению впечатляющих результатов в распознавании речи и изображений, постановке медицинских диагнозов, переводе текста и создании изображений, генерации речи и музыкальных композиций. Сегодня, как признают специалисты, нейронные сети признаны одним из лучших алгоритмов машинного обучения, а решения на их основе показывают на данный момент самые выдающиеся результаты. Однако, даже в этой области существует большое количество проблем. Дело в том, что нейроны, моделируемые в нейронных сетях, значительно проще устроены, нежели нейроны в человеческом мозге к тому же это всего лишь программы. А создавать искусственные нервные клетки современная наука пока не научилась. Даже если бы это удалось, то воссоздать человеческий мозг все равно бы не получилось, потому что его структура крайне сложна. Кроме того, все возможности человеческого мозга до конца не изучены. Но если в ближайшие пару сотен лет и это станет возможным, исследователи столкнутся с новой проблемой. Как наделить такой мозг знаниями и опытом? Ведь на самом деле человеческий мозг развивается только благодаря деятельности человека на протяжении всей его жизни. Также существует еще одна необъяснимая до сих пор проблема так называемого паралича сети. Существует своеобразная аритмия сигналов, поступающих с нейронов, в результате чего все нейроны начинают вырабатывать ошибочные сигналы. Ошибка в сигнале одного нейрона выводит из строя всю сеть.
Современные нейронные сети устроены в полторы тысячи раз проще, чем, например, головной мозг крысы. Сейчас создаются специализированные процессоры для обучения таких сетей (так называемые нейроморфические процессоры), которые позволят увеличить скорость вычислений на несколько порядков. На сегодняшний день разработчики не просто заняты увеличением количества нейронов в сети, но и изменением их конструкции.
В создании искусственного интеллекта также существует психологическая проблема. Дело в том, что систему искусственного интеллекта необходимо наделить самооценкой, само отношением и самоанализом. Данной системе нужно каким-либо образом дать понять, что она существует. А продвижений в этом вопросе до сих пор нет. Кроме того, чтобы система считалась интеллектуальной, она должна обладать мотивацией. Такие системы должны уметь сами ставить перед собой цели и находить способы их достижения. Таким образом, система, претендующая на звание интеллектуальной должна обладать способностью к самоанализу для того, чтобы иметь возможность выявлять мотивы к своей деятельности для постановки целей и решения задач. На данный момент существуют лишь гипотетические способы создания таких систем в виде многопроцессорных пространств, в которых информация накапливается и используется с помощью определенного свода правил. Что касается последствий искусственного интеллекта для человека и общества в целом, то как известно, человечеству свойственно саморазрушение. Из истории мы знаем, что многие научные изобретения принесли изначально огромное количество бед, прежде чем их научились использовать разумно, во благо общества. Поэтому стоит хорошо задуматься, к чему приведет человечество создание искусственного разума.