Физические эффекты и явления
Шрифт:
17.6. Эффект самофокусировки.
Известно, что первоначально параллельный пучок света по мере рапространения в среде (включая и вакуум) расплывается за счет дифракционных явлений. Это справедливо при малых интенсивностях света, пока еще среда остается линейной. с увеличением мощности светового пучка его расходимость начинает уменьшаться. При некоторой критической мощности пучок может распространяться, вообще не испытывая расходимости (режим самоканализации), а при мощности, превышающей критическую, пучок скачком сжимается к оси и сходится в точку наа некотором расстоянии от места входа в среду ставшую теперь нелинейной. Происходит пройесс самофокусировки. Это расстояние, называемое эффективной длиной самофокусировки, обратно пропорционально квадратному корню из интенсивности пучка. Оно также зависит
Физические причины этого эффекта заключаются в изменении показателя преломления среды в сильном световом поле. В это изменение вносит свой вклад также эффекты, как электрострикция, высокочастотный эффект Керра и изменение преломления среды за счет ее нагрева в световом пучке. Вследствии этих эффектов, среда в зоне пучка становится оптически неоднородной; показатель преломления среды определяется теперь распределением интенсивности световой волны. Это приводит к явлению нелинейной рефракции, т.е. переферийные лучи пучка отклоняются к его оси, в зону с большей оптической плотностью. Таким образом нелинейная рефракция начинает конкурировать с дифракционной расходимостью. При взаимной компенсации этих процессов и наступает самоканализация, переходящая в самофокусировку при привышении критической мощности пучка. Процесс самофокусировки выделяется среди прочих нелинейных эффектов тем, что он обладает "лавинным" характером. Действительно, даже малое увеличение интенсивности в некотором участке светового пучка приводит к концентрации лучей в этой области, а следовательно и к дополнительному возрастанию интенсивности, что усиливает нелинейную рефракцию и т.д.
Отметим, что критические мощности самофокусировки относительно не велики (для ниробензола - 25 квт, для некоторых сортов оптического стекла - 1 вт), что создает реальные предпосылки использования описанного эффекта для передачи энергии на значительные расстояния.
Интересно, что при самофокусировке излучение импульсных лазеров в органических жидкостях пучок после "охлопывания" распространяется не ввиде одного пучка, а распадается на множество короткоживущих (10 в минус 10-ой степени сек.) узких (мкм) областей очень сильного светового поля (около 10 в 7-ой степени в/см) - световых нитей. Это явление обьясняют тем, что при самофокусировке лазерных импульсов нелинейная среда работает как линза с изменяющимися во времени фокусными расстояниями, и быстрое движение фокусов (скорости порядка 10 в 6-ой степени м/сек.) в сочетании с аберрациями "нелинейной линзы" может создать длинные и тонкие световые каналы.
В нелинейной оптике уже обнаружено множество интереснейших эффектов. Кроме описанных выше, к ним относятся такие эффекты как оптическое детектирование, гетеродинирование света, пробой газов мощным излучением с образованием т.н. "лазерной искры", светогидравлический удар, нелинейное отражение света и другие. Некоторые из эффектов уже нашли применение не только в научных исследованиях, но и в промышленности. Так например, светогидравлический удар (см."Гидравлические удары") применяется при штамповке, упрочнения материалов, для ударной сварки и т.д., что наиболее себя оправдывает в производстве микроэлектроники, в условиях особо чистых поверхностей.
17.7. Светогидравлический удар (открытие - 65)
Эффект заключается в том, что при пропускании мощного лазерного излучения через жидкость в ней возникают акустические волны с высоким давлением, достигающим миллиона атмосфер, сопровождающиеся вспышкой белого света и выбросом жмдкости на значительные расстояния, при этом тела, помещенные вблизи удара, подвергались сильным деформациям и разрушению. Точной теории эффекта еще нет, однако уже ясно, что это целый комплекс явлений. Здесь и самофокусировка, увеличивающая интенсивность световой волны в малом обьеме, и первоначальное ее поглощение, связанное с ВРМБ (см. 17.1) и усиленное поглощение света образующейся плазмой, что приводит к возникновению ударной волны и затем к авитации в жидкости. Предварительная фокусировка лазерного пучка и введение в жидкость поглощающих добавок значительно усиливают проявления эффекта.
17.8. Нелинейная оптика.
Нелинейная оптика - новая и постоянно
развивающаяся наука. Многообразие ее эффектов далеко не исчерпано известными ныне. Так, совсем недавно были предсказания теоретически гистеризисные скачки отражения и преломления на границе нелинейной среды - целый класс новых эффектов нелинейной оптики. (Данных об эксперементальном подтверждении их существования пока нет.)Суть эффектов заключается в следующем. Если под небольшим углом скольжения на границу раздела двух сред с близкими значениями диэлектрической проницаемости, одна из которых нелинейна, падает пучок мощного светового излучения, то при изменении интенсивности излучения (угол падения фиксирования), когда она достигает определенного значения, может произойти скачок от прохождения к полному внутреннему отражению, при обратном изменении интенсивности скачок от ПВО к прохождению произойдет уже при другом ее значении. Такие же скачки могут наблюдаться и при изменении угла падения, когда фиксировано значение интенсивности.
Если существование этих эффектов подтвердится, то они могут быть широко использованы для исследования нелинейных свойств веществаи в лазерной технике. Так, например, гистеризисная оптическая ячейка может служить идеальным затвором в лазере при генерации гигантских импульсов, т.к. в режиме ПВО практически не поглощает энергии; с помощью гистерезисных эффектов можно будет с большой точностью измерять интенсивность излучения, фиксируя скачки и т.д.
Л И Т Е Р А Т У Р А
1. Квантовая электроника, Маленькая энциклопедия, изд. Советс
кая энциклопедия, М., 1966.
2. Н.Бломберген, Нелинейная оптика, пер. с англ., М., 1966
3. М.Шуберт, В.Вильгельми, Введение в нелинейную оптику пер. с
нем. "Мир", М., 1973.
4. Ф.Цернике, Дж.Мидвинтер, Прикладная нелинейная оптика, пер.
с англ., "Мир", М., 1976
5. Ю.П.Конюшая, Открытия и начно-техническая революция, "Мос
ковский рабочий", М., 1974
6. Г.А.Аскарьян, ЖЭТФ, 42, 1567, 1962
7. А.Ю.Каплан, Письма в ЖЭТФ, 9, 58, 1969
8. А.К.Каплан, Письма в ЖЭТФ, том 24, вып. 3, 1976
18. ЯВЛЕНИЯ МИКРОМИРА.
18.1. Радиоактивность.
Под радиоактивностью обычно понимают самопроизвольное превращение неустойчивых изотопов одного вещества в изотопы другого; при этом происходит испускание элементарных частиц и жесткого электромагнитного излучения. Различают естественную и искуственную радиоактивность. Процессы, происходящие при естественной радиоактивности позволяют судить о структуре и свойствах радиоактивных веществ.В настоящее время все большее значение получают процессы,связанные с искуственной радиоактивностью.Практически все вещества имеют радиоактивные изотопы, поэтому, не изменяя химического строения вещества можно его пометить, сделав часть ядер радиоактивными. Это позволяет с большей точностью следить за перемещением этого вещества или изучать его внутреннюю структуру.
А.с. 234 740: Способ определения концентрации пылевых частиц с осаждением этих частиц в осадительном устройстве, отличающийся тем, что с целью расширения диапазонав измерения, в исследуемый газ добавляют радиоактивный газ, например, радон, а после осаждения частиц определяют их радиоактивность по величчине которой судят о концентрации пылевых частиц в газе.
А.с. 242 324: Способ ускоренного определения годности защитно-моющих и лекарственных веществ наружного применения, при котором на кожу наносят слой исследуемого вещества, отличающийся тем, что с целью определения времени проникновения вещества сквозь кожу и времени выполнения им барьерных функций, в исследуемое вещество предварительно вводят радиоизотопы, например, йода, фояфора или серы, и проводят радиометрические измерения исследуемого обьекта.
18.2. Рентгеновское и гамма излучения.
Рентгеновское излучение, открыто в 1895 году физиком Рентгеном, имеет ту же электромагнитную природу, что гамма излучение испускаемые ядрами атомов радиоактивных элементов, поэтому оба вида изучения подчиняются одинаковым закономерностям при взаимодействии с веществом. Принципиальная разница между двумя этими видами излучения заключения в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.