Чтение онлайн

ЖАНРЫ

Физика будущего
Шрифт:

Журналисты — охотники за скандалами говорят: «Следуй за деньгами», но астрономы, занимающиеся поисками внеземной жизни, скажут иначе: «Следуй за водой».

Позже Kepler будет заменен другими, более чувствительными космическими аппаратами, такими как «Искатель землеподобных планет» (TPF) [32] . Хотя дата запуска этого аппарата откладывалась уже несколько раз, он по-прежнему остается наилучшим кандидатом на продолжение в будущем исследований Kepler.

Предполагается, что оптика на «Искателе» будет намного лучше и искать в космосе двойников Земли ему станет проще. Во-первых, на нем будет вчетверо большее по размеру и в сто раз более чувствительное [33] зеркало, чем на Космическом телескопе имени Хаббла. Во-вторых, он будет снабжен инфракрасными датчиками, при помощи которых можно ослабить излучение звезды в миллион раз и выявить, соответственно, присутствие рядом с ней тусклой планеты. (Чтобы добиться такого эффекта, аппарат измеряет излучение

звезды на двух разных длинах волн и определенным образом комбинирует их, чтобы они в точности компенсировали друг друга; таким образом можно как бы убрать с картинки лишнее изображение — звезду.)

32

Проект TPF действительно долгое время фигурировал в перспективных планах NASA, но всегда оставался «бумажным проектом», далеким от этапа практической реализации. В проекте бюджета на 2012 финансовый год нет ни его, ни второго проекта из того же тематического направления — «Фотограф землеподобных планет» (TPI). Возможно, их наследником будет миссия New Worlds для получения изображений и спектроскопии землеподобных планет, однако о сроках ее запуска ничего сказать нельзя. — Прим. пер.

33

В действительности речь шла не о чувствительности, а о качестве изготовления поверхности зеркала. — Прим. пер.

Итак, в самом недалеком будущем у нас появится каталог из нескольких тысяч планет, из которых, возможно, несколько сотен окажутся весьма похожими на Землю по размеру и составу. Это, в свою очередь, подогреет интерес к отправке в дальний космос зондов для исследования таких планет. Множество ученых сосредоточат свои усилия на том, чтобы определить, есть ли на этих планетах океаны из жидкой воды и какое-то радиоизлучение — возможно, сигналы разумных форм жизни.

Европа — вне «зоны жизни»

Надо заметить, что и в пределах Солнечной системы имеется весьма интересный и соблазнительный объект для будущих исследований: Европа. Много десятилетий считалось, что жизнь в любой солнечной системе возможна только в так называемой «зоне жизни», т. е. на определенном расстоянии от светила, где на планетах не слишком жарко и не слишком холодно и где существуют подходящие для обитания условия. На Земле так много драгоценной жидкой воды, потому что она находится от Солнца на правильном расстоянии. На планете вроде Меркурия жидкая вода мгновенно вскипела бы, поскольку Меркурий находится слишком близко к Солнцу. На Юпитере — замерзла бы, так как он расположен слишком далеко. А поскольку первые молекулы ДНК и белков зародились, скорее всего, именно в жидкой воде, долгое время все были уверены, что жизнь в Солнечной системе может существовать только на Земле и, возможно, еще на Марсе.

Однако астрономы ошибались. После того как мимо Юпитера и его лун пролетели два межпланетных аппарата «Вояджер», стало очевидно, что в нашей системе существует еще одно место, где могла бы с комфортом существовать жизнь: под ледяным покровом лун Юпитера. Очень быстро внимание астрономов привлекла Европа, один из четырех крупнейших спутников Юпитера, открытых в 1610 г. Галилеем. Поверхность этого спутника всегда покрыта ледяной коркой, зато под ней — жидкий океан. Океаны на Европе намного глубже земных, поэтому считается, что по суммарному объему они превосходят океаны Земли вдвое.

Ученые испытали настоящий шок, осознав, что в Солнечной системе существует еще один серьезный источник энергии, помимо Солнца. Поверхность Европы под ледяной коркой непрерывно греют приливные силы. По мере движения спутника вокруг планеты-гиганта ее притяжение сплющивает луну в разных направлениях, вызывая трение глубоко в ядре. Трение порождает тепло, которое, в свою очередь, плавит лед и обеспечивает существование стабильного океана жидкой воды.

Это открытие означает, что луны далеких от Солнца газовых гигантов могут оказаться более интересными объектами для исследования, чем сами планеты. (Вероятно, именно поэтому Джеймс Кэмерон выбрал в качестве места действия фантастического фильма «Аватар» 2009 г. спутник газового гиганта, схожего по размерам с Юпитером.) Внезапно число мест во Вселенной, потенциально подходящих для жизни, многократно умножилось.

Результатом этого замечательного открытия стал новый проект — «Миссия в систему Юпитер — Европа» (EJSM), запуск которого предварительно запланирован на 2020 г [34] . Предполагается, что аппарат выйдет на орбиту Европы и, возможно, приземлится на нее. Ученые, конечно, мечтают изучить Европу поподробнее и переправить на нее много сложной техники. Уже разработано немало методов поиска жизни подо льдом. Один из возможных проектов — Ice Clipper; авторы предлагают отправить к Европе орбитальный аппарат, который будет сбрасывать на лед металлические шары, а затем тщательно исследовать поднятые вверх тучи пара и обломков. Еще более амбициозный проект — запустить под лед подводную лодку-робота.

34

Этот проект был выбран в феврале 2009 г. для совместной реализации силами NASA и Европейского космического агентства. В начале 2011 г. американцы вышли из проекта из-за нехватки средств, а Европа отложила свое решение об участии в нем до февраля 2012 г. Упомянутый далее проект Ice Clipper

предлагался на конкурс NASA еще в 1997 г. и не был принят. — Прим. пер.

Интерес к Европе подогревается и последними открытиями на дне земных океанов. Так, до 1970-х гг. ученые в большинстве своем считали, что единственный источник жизненной энергии на Земле — Солнце. Однако в 1977 г. субмарина Alvin обнаружила свидетельства новых форм жизни, процветающих там, где никто прежде не подозревал об их существовании. Исследуя Галапагосский рифт, субмарина обнаружила на дне гигантских сидячих червей, мидий, ракообразных, двустворчатых моллюсков и другие формы жизни, использующие в качестве источника энергии вулканическое тепло. Везде, где есть энергия, может быть и жизнь; а подводные вулканические выходы, которые называют еще «черными курильщиками», представляют собой новый источник энергии в чернильной темноте океанских глубин. Более того, некоторые ученые предполагают, что первая ДНК образовалась не в каком-нибудь приливном водоеме на берегу тропического океана, а глубоко в море возле черного курильщика. Некоторые из самых примитивных (и, возможно, самых древних) форм ДНК найдены именно там — на дне океана. Может быть, и на Европе возле вулканических выходов на дне глобального океана могло зародиться что-нибудь вроде ДНК.

Пока мы можем лишь гадать о том, какие формы жизни могли сформироваться подо льдами Европы. Если жизнь там все же существует, то высшими формами ее, вероятно, должны являться водные животные, не знающие света и ориентирующиеся при помощи сонара; их вселенная ограничена ледяным «небом».

LISA — что было до Большого взрыва?

А вот еще один космический проект, который мог бы перевернуть наши представления об окружающем мире. Это лазерная интерферометрическая космическая антенна (LISA) и то, что придет вслед за ней. Не исключено, что аппараты, подобные этому, смогут сделать невозможное: выяснить, что происходило до Большого взрыва.

Астрономы довольно давно сумели измерить скорость, с которой от нас отдаляются далекие галактики. (Измеряется эта величина по допплеровскому сдвигу, т. е. по изменению длины световых волн от объектов, которые быстро приближаются к нам или быстро от нас удаляются.) Таким образом, нам известна нынешняя скорость расширения Вселенной. Если же «отмотать пленку назад», можно вычислить, когда именно оно началось. Именно таким способом ученые определили, что Большой взрыв имел место 13,7 млрд лет назад. Проблема, однако, в том, что самый продвинутый нынешний аппарат — WMAP (зонд микроволновой анизотропии имени Уилкинсона) — способен заглянуть в прошлое и посмотреть, что творилось во Вселенной примерно через 400 000 лет после взрыва. О том же, почему произошел Большой взрыв, что его вызвало и что именно взорвалось, не может пока сказать никто.

Именно поэтому проект LISA вызывает такой интерес. Предполагается, что эта антенна будет регистрировать совершенно новый тип излучения: гравитационные волны, рожденные непосредственно в момент Большого взрыва.

Каждый новый вид излучения, который человечеству удавалось превратить в инструмент познания, менял не только физические формулы, но и наш взгляд на мир. Когда Галилей впервые использовал оптический телескоп для изучения звезд и планет и составления карты звездного неба, родилась современная астрономия. Когда вскоре после Второй мировой войны появились радиотелескопы, перед нами возникла Вселенная взрывающихся звезд и черных дыр. Теперь же пришло время третьего поколения телескопов; вполне возможно, что эти аппараты, способные регистрировать гравитационные волны, раскроют перед нам еще более захватывающие перспективы и мы увидим мир сталкивающихся черных дыр, высших измерений и даже Мультивселенной.

Предварительно запуск этого космического аппарата запланирован на период с 2018 по 2020 г [35] . Согласно проекту LISA будет состоять из трех аппаратов, соединенных лазерными лучами и образующих в космосе гигантский треугольник со стороной около 5 млн км. Таким образом, это будет самый крупный прибор, когда-либо выведенный в космос. Аппараты системы LISA будут слегка покачиваться на гравитационных волнах, до сих пор блуждающих по Вселенной после Большого взрыва. Лазерные лучи, соединяющие аппараты, почувствуют любое возмущение, а специальные датчики позволят зарегистрировать частоту и другие характеристики этого возмущения. Если все получится, ученые смогут увидеть мир таким, каким он был сразу после Большого взрыва, — скажем, через одну триллионную долю секунды после него. (По Эйнштейну, пространство-время может растягиваться и изгибаться и напоминает по своим свойствам натянутое полотно. Любое серьезное возмущение во Вселенной, такое как столкновение черных дыр или Большой взрыв, рождает на этом полотне рябь, которая разбегается в разные стороны. Эта рябь, или гравитационные волны, слишком малы, чтобы их можно было заметить при помощи обычных инструментов, но система LISA будет достаточно большой и чувствительной, чтобы засечь вибрации, вызванные гравитационными волнами.)

35

Увы, и в этом текст устарел. Как и EJSM, этот совместный проект лишился в начале 2011 г. поддержки США и находится в стадии пересмотра, претендуя на те же средства в бюджете EKA, что и EJSM и Международная рентгеновская обсерватория IXO. Лишь один из этих трех проектов в урезанном виде может быть утвержден к реализации в 2012 г., а запуск может состояться после 2020 г. — Прим. пер.

Поделиться с друзьями: