Физика в бою
Шрифт:
В связи с этим зарубежные специалисты намечают внедрить в ракетостроение новые металлические материалы, такие, как титан, цирконий, ниобий, и сплавы на их основе, обладающие высокой стойкостью против химической и электрохимической коррозии, а также применять пластические массы для деталей и узлов ракет, находящихся под воздействием агрессивных сред.
Однако, несмотря на внедрение этих, так называемых конструктивно-технологических мероприятий, с помощью только их, как считают зарубежные военные специалисты, не удастся обеспечить надежную защиту ракет от коррозии. Поэтому в последние годы борьбу с ней они ведут в основном по линии создания и обеспечения стабильных характеристик микроклимата шахтной среды.
Микроклимат шахты определяет общие условия хранения и содержания ракет на боевом дежурстве, а также
Герметизация шахтных пусковых установок достигается применением воздухо- и водонепроницаемых уплотнений защитных крыш и гидроизоляцией шахтных стволов и оголовков. Гидроизоляция шахт осуществляется применением одного или нескольких изоляционных слоев, изготовляемых из металлических или других водонепроницаемых материалов, например покрытий из стеклопластиков.
Необходимая чистота атмосферы в шахте обеспечивается приточно-вытяжными системами вентиляции с резервными воздухозаборниками. Для того чтобы устойчиво поддерживать оптимальный микроклимат шахты независимо от колебаний температуры и влажности воздуха на поверхности земли и внутреннего тепло-и влаговыделения, используются кондиционеры. Стабильность микроклимата шахты достигается автоматическим поддержанием необходимого состава воздуха, температуры, влажности. Как считают зарубежные специалисты, абсолютная влажность воздуха, подаваемого в шахты, не должна превышать 0,4 г на один килограмм.
В 1963 г. ракетное конструкторское бюро инженерного корпуса США разработало систему кондиционирования воздуха для шахт с ракетами «Титан II» на основе использования в качестве рабочего тела хлористого лития. Это вещество обладает высокой гигроскопичностью и легко регенирируется (восстанавливается) при обработке горячим воздухом. Сообщалось, что системы кондиционирования в шахтах для ракет «Титан II» обеспечивают поддержание микроклимата при температуре 16° и относительной влажности не более 30 %. Такой температурно-влажностный режим шахтной пусковой установки, по утверждению американских специалистов, полностью исключает коррозионное разрушение ракет при утечке компонентов топлива и воздействии на ракету шахтной атмосферы.
Однако, как сообщалось, в печати, эти и другие меры защиты не настолько эффективны, чтобы исключить полностью воздействие агрессивных сред шахтной атмосферы на ракеты и шахтные пусковые установки. Поэтому в США разработаны и находят широкое применение различные технические средства для измерения коррозии ракет и наблюдения за состоянием и составом атмосферы шахтных пусковых установок. Так, например, в шахтах для ракет «Титан II» и «Минитмен» используются визуальные и дистанционные системы электрического контроля. С их помощью производится непрерывное считывание метеорологических характеристик микроклимата шахты и степени коррозирования наиболее ответственных деталей и систем ракеты, т. е. постоянно работают своеобразная аварийно-техническая служба и «служба погоды» шахты.
Как видно из вышесказанного, боевая и техническая надежность современного оружия, даже такого мощного и совершенного, как ракетное, во многом зависит от внешних условий. И совсем не безобидным на поверку оказывается обыкновенный воздух, окружающий могучую стальную громаду, где бы она ни находилась — на поверхности земли или под семью замками железобетонной шахты.
ВОЛНА И КОРАБЛЬ
Океанская волна! Вряд ли найдется читатель, который не представляет себе ее мощи. И конечно, всякий понимает, сколько неприятностей может причинить морякам разбушевавшаяся стихия. Известны исторические примеры, когда штормы срывали крупные морские операции. Во время англо-испанской войны в 1588 г., когда на Британские острова двигалась «Непобедимая армада»
испанских кораблей, англичанам оставалось, как говорится, только уповать на бога. Тогда «бог» помог англичанам: боевые корабли великой армады и транспорты с войсками попали в жестокий шторм в Бискайском заливе, и треть кораблей погибла. После неудачной попытки высадить десант испанцы отправились через Северное море вокруг Шотландии к своим берегам. Шторм у Оркнейских островов выбросил на берег и потопил еще ряд кораблей. В Испанию вернулось всего 50 кораблей из 130, потери достигли 20 тыс. человек.Шторм и волна были главной опасностью кораблей прошлого. Но только ли прошлого? Во вторую мировую войну в штормовую погоду разламывались крупные транспорты и такие боевые корабли, как эскадренные миноносцы. Подсчитано, что только в проливе Ла-Манш на каждый невоенный год с 1902 по 1961 приходится 271 судно (включая мелкие), погибшее по различным причинам и прежде всего от штормов.
Однако известно, что уже кораблестроители глубокой древности умели строить корабли с высокими мореходными качествами, а мореплаватели отваживались совершать на них дальние походы. В V–IV веках до нашей эры карфагенский мореплаватель Ганнон вывел из Средиземного моря флотилию из 60 кораблей, миновал Геркулесовы Столбы и взял курс на юг вдоль побережья Африки. Флотилия дошла до побережья Сенегала, основав по пути 7 городов. На совсем небольших, по современным понятиям, кораблях совершали свои плавания русские мореплаватели — новгородцы и поморы. Да и каравеллы Колумба и Магеллана не отличались большими размерами.
Что же определяет возможности корабля безопасно совершать длительные плавания? Морякам и кораблестроителям хорошо известно такое понятие, как мореходность. Мореходность — это совокупность качеств корабля, обеспечивающих успешное его плавание при определенных условиях погоды. Корабль считается мореходным, если в море в свежую или штормовую погоду испытывает лишь умеренную бортовую (до 15°) и килевую (до 5°) качку с малой угловой скоростью (период качки не менее 10 сек.), если он устойчив на курсе, может развивать значительную скорость хода, волны не заливают его палубы, а брызги не мешают управлять кораблем и использовать его оружие или специальное, например тральное, оборудование. Мореходные качества корабля зависят от его размеров и их соотношения, от формы обводов, распределения составляющих весовой нагрузки корабля по высоте и т. д.
Естественно, что корабль больших размеров обладает более высокими мореходными качествами. А как обстоит дело, когда надо обеспечить максимальную мореходность при заданном водоизмещении корабля? Прежде всего, на параметры его качки влияет остойчивость— свойство корабля, препятствующее его накренению. Как ни странно на первый взгляд, но чрезмерное повышение остойчивости приводит к более резкой качке, т. е. ухудшает мореходные качества корабля. В то же время остойчивость не может быть уменьшена ниже определенной величины из-за требований другого, не менее важного качества — непотопляемости корабля. Естественно, мореходность корабля можно повысить за счет увеличения объема его надводного борта — запаса плавучести, но этот путь связан с рядом ограничений по весовой нагрузке. Наконец, остается форма подводной и надводной части корпуса корабля. Хотя форма подводной части корабля выбирается в первую очередь из условия обеспечения максимальной скорости на тихой воде, влияния на нее требований мореходности значительны. В последние годы в связи с увеличением размеров гидроакустических антенн, размещаемых в нижней части носовой оконечности корабля, широкое распространение получила каплеобразная форма подводной части его носовой оконечности. Такая форма способствует повышению скорости‘хода корабля на волнах и снижению амплитуды его килевой качки.
Определяющий внешний фактор мореходности корабля— морские волны. Наибольшие "ветровые волны наблюдаются в Южном полушарии. Длина их достигает 400 м, высота 12–13 м, период 17–18 сек., скорость распространения до 22 м/сек. Еще большие океанские волны возникают при подводных землетрясениях (так называемые волны цунами), однако такие волны — явление редкое. Гораздо чаще наблюдаются морские волны высотой 3–5 м. Зато такие волны обладают большей крутизной. Если отношение высоты к длине волны в открытом океане составляет 1/15—1/35, то для морских волн это отношение редко превосходит 1/10.