Физика в технике
Шрифт:
Спектральный анализ имеет очень большое значение во многих отраслях науки и техники. С его помощью, на сталелитейных заводах определяют качество выплавленных сталей, содержание в них углерода, никеля, кремния, марганца и др. Спектральный анализ позволяет определять химический состав звезд и скорости их движения относительно Земли, измерять температуру светящихся
До сих пор говорилось об объектах, которые сами испускают свет. Однако в ряде случаев оказывается невозможным разогреть то или иное вещество до высокой температуры без изменения его свойств. Невозможно разогреть, например, воду или какое-либо органическое соединение до температуры, при которой эти вещества стали бы излучать свет, так как при гораздо более низкой температуре эти вещества распадутся или перейдут в другое агрегатное состояние.
Каким же образом исследовать структуру таких веществ?
На помощь приходит молекулярный спектральный анализ, основанный на том, что при прохождении света, спектр которого является непрерывным, через прозрачное вещество в спектре наблюдаются полосы поглощения.
Изучая эти полосы, можно изучить характер молекулярных связей в веществе и структуру самих молекул. Некоторые вещества (например, вода), являясь прозрачными для видимого света, дают ряд полос в инфракрасной области спектра, обусловленных структурой самих молекул воды.
С помощью молекулярного спектрального анализа изучено чрезвычайно большое количество различных видов веществ и химических соединений, в том числе таких, как нефть и ее производные, различные виды белков и др.
Однако область физической оптики далеко не исчерпывается применением спектрального анализа. Так, с помощью интерференционных явлений молено осуществлять контроль при изготовлении очень точных деталей и механизмов, контролировать качество различных поверхностей с точностью до одной стотысячной доли миллиметра, изготовлять светофильтры, обладающие очень узкой спектральной полосой пропускания.
Такие светофильтры были с успехом использованы при фотографировании натриевого облака — искусственной кометы, созданной впервые советскими учеными при запуске космической ракеты в сторону Луны
Интерференционные явления легли в основу опытов Майкельсона, результаты которых послужили фундаментом для создания теории относительности.
Немалую роль в развитии физической оптики сыграли такие ученые, как Ньютон, большая часть работ которого посвящена исследованию различных оптических явлений, Р. Вуд, создавший новый тип диффракционной решетки — прибора для спектрального разложения света, Рэлей, Вавилов и другие.
Самостоятельным разделом физической оптики является изучение люминесцентных свойств жидких и твердых соединений (люминесценцией называют способность веществ светиться после облучения их видимым, ультрафиолетовым или инфракрасным светом).
На люминесценции основан люминесцентный анализ, с помощью которого можно производить весьма точные измерения количественного состава различных органических соединений, восстанавливать стершиеся надписи, анализировать состав красок и многое другое.
Здесь приведены лишь некоторые примеры, из которых видно, что в современной науке и технике физическая оптика занимает далеко не последнее место.
Ядерная физика и ядерная энергетика
После открытия Анри Беккерелем в 1896 году радиоактивности урана в физике появилось новое направление — ядерная физика, изучающая свойства и строение атомных ядер.
Представления об атомном
ядре менялись по мере накопления количества наблюдений и экспериментов с «элементарными» частицами.Пьер и Мария Кюри, Э. Резерфорд и другие ученые открыли три типа радиоактивных ядерных излучений: излучение -частиц (ядер атомов гелия); -излучение, т. е. излучение потока электронов атомными ядрами; -лучи — электромагнитное излучение, подобное свету, но с очень короткой длиной волны.
Каждое из этих излучений возникает при распаде атомных ядер и является, таким образом, одним из источников нашего познания о строении и свойствах ядер.
В 1932 году советский физик Д. Д. Иваненко высказал гипотезу, согласно которой атомные ядра рассматривались как состоящие из положительно заряженных частиц — протонов и нейтральных частиц — нейтронов, открытых незадолго перед этим англичанином Дж. Чедвиком при облучении элемента бериллия -частицами.
В дальнейшем с развитием квантовой механики и экспериментальной ядерной техники появилась теория различных ядерных процессов, а также выявлен характер и особенности ядерных сил, действующих между протонами и нейтронами, находящимися на весьма близких расстояниях. Немалая заслуга в этом принадлежит советским физикам И. М. Франку, Л. В. Грошеву, А. И. Алиханову, Д. Д. Иваненко и др., труды которых наряду с работами Гейзенберга, Бора и Ферми послужили основой, на которой была построена современная теоретическая ядерная физика.
Что же представляют собой атомные ядра и каким образом происходит выделение внутриядерной энергии?
Как известно, атомные ядра состоят из протонов и нейтронов, устойчиво соединяющихся в определенных соотношениях друг с другом. Самое легкое атомное ядро — ядро атома водорода — состоит из одного протона, ядро тяжелого водорода (дейтерия) — из протона и нейтрона (рис. 20).
Чтобы сложное ядро существовало устойчиво, число нейтронов и протонов должно быть одинаковым у более простых ядер, но у тяжелых ядер число нейтронов должно превышать число протонов в определенном соотношении.
Протоны несут на себе положительные электрические заряды и поэтому отталкиваются друг от друга. Нейтроны нейтральны, и на них не действуют никакие силы (кроме силы тяжести). Все это справедливо только до тех пор, пока протоны и нейтроны находятся друг от друга на расстоянии, значительно превышающем их собственный диаметр. Если же эти частицы подходят очень близко друг к другу, возникают силы притяжения, во много раз превышающие электрическое отталкивание протонов и сжимающие протоны и нейтроны в очень плотное, и очень небольшое по своим размерам атомное ядро.
Известно, что энергия движения частиц вещества выражается температурой: чем больше энергия вещества, тем выше температура. Например, чтобы сблизить ядра атомов водорода, нужно нагреть водород примерно до сотни миллионов градусов. Если необходимое сближение достигнуто и ядерные силы начали действовать, энергия, выделяемая ядерными силами, покидает атомное ядро или в форме нескольких мощных фотонов, или в виде энергии движения одной или нескольких частиц, выброшенных из ядра.
Энергия, выделяющаяся при образовании атомных ядер химических элементов, настолько велика, что заметно уменьшает массу и вес ядра. По этому уменьшению массы можно очень, точно и сравнительно просто определять энергию образования атомных ядер всех известных видов.