Чтение онлайн

ЖАНРЫ

Гиперпространство
Шрифт:

Согласно этой картине волновая функция Вселенной распространяется во всех возможных вселенных. Подразумевается, что эта волновая функция довольно велика вблизи нашей Вселенной, следовательно, есть немалая вероятность, что наша Вселенная и есть та, которая нам нужна, чего и следовало ожидать. Но волновая функция распространяется и на все остальные вселенные, в том числе безжизненные и несовместимые с привычными нам законами физики. Поскольку волновая функция предполагается для этих прочих вселенных исчезающе малой, мы не рассчитываем, что наша Вселенная сделает квантовый скачок к ним в ближайшем будущем.

Цель, стоящая перед квантовыми космологами, — подтвердить эту догадку математически, показать, что волновая функция Вселенной велика для нашей нынешней Вселенной и исчезающе мала для остальных. Это доказывало бы, что привычная для нас Вселенная в некотором смысле уникальна и вместе с тем стабильна. (В настоящее время специалисты по квантовой космологии не в силах

решить эту важную задачу.)

Если отнестись к доводам Хокинга со всей серьезностью, это означает, что начать анализ следует с бесконечного количества всех возможных вселенных, сосуществующих друг с другом. Или, попросту говоря, определение Вселеннойтеперь не сводится к выражению «все, что существует». Теперь это означает «все, что может существовать». Например, на рис. 12.1 мы видим, как волновая функция Вселенной может распространиться на несколько возможных вселенных, причем наша окажется наиболее вероятной, но определенно не единственной. Квантовая космология Хокинга также подразумевает, что волновая функция Вселенной позволяет этим вселенным сталкиваться. «Червоточины» могут возникать и соединять эти вселенные. Однако это не те «червоточины», с которыми мы имели дело в предыдущих главах, не те, которые соединяют разные области трехмерного пространства: в данном случае «червоточины» соединяют друг с другом разные вселенные.

Рис. 12.1. Волновая функция вселенной Хокинга с наибольшей вероятностью сосредоточена вокруг нашей Вселенной. Мы живем в нашей Вселенной, поскольку это наиболее подходящий и наиболее вероятный вариант. Однако есть маленькая, но не исчезающая вероятность, что волновая функция предпочитает соседние, параллельные вселенные. Таким образом, переходы между вселенными возможны (хотя и очень маловероятны).

Представим себе, к примеру, множество мыльных пузырей, зависших в воздухе. При нормальных условиях каждый такой пузырь представляет собой вселенную, он периодически сталкивается с другими пузырями и сливается в один большой или делится на два пузыря поменьше. Отличие в том, что теперь каждый мыльный пузырь — целая десятимерная вселенная. Так как пространство и время могут существовать только на каждом пузыре, между ними нет ни пространства, ни времени. У каждой вселенной свое «время», ограниченное ею одной. Незачем добавлять, что время во всех этих вселенных идет с одинаковой скоростью. (Однако следует подчеркнуть, что путешествия между вселенными недоступны для нас из-за примитивного уровня развития нашей техники и технологии. Более того, необходимо отметить, что большие квантовые переходы в таких масштабах крайне редки, их частота сопоставима с продолжительностью существования нашей Вселенной.) Большинство таких вселенных мертвы, полностью лишены признаков жизни. В этих вселенных действуют другие законы физики, следовательно, физические условия, благодаря которым жизнь стала возможной, не сложились. Может быть, среди миллиардов параллельных миров только один, наш, обладает тем набором физических законов, который нужен для появления жизни (рис. 12.2).

Рис. 12.2. Наша Вселенная может оказаться одним из бесчисленного множества параллельных миров, каждый из которых связан с остальными бесконечным множеством «червоточин». Путешествия по этим «червоточинам» возможны, но чрезвычайно маловероятны.

Теория «дочерней вселенной» Хокинга хотя и не предлагает практические методы транспортировки, тем не менее поднимает философские и, возможно, даже религиозные вопросы. Она уже породила два затяжных спора в кругах космологов.

Возвращение Бога во Вселенную?

Первый из этих споров касается антропного принципа. На протяжении веков ученые привыкли рассматривать Вселенную в целом независимо от человеческого фактора. Мы больше не проецируем наши, человеческие предрассудки и фантазии на каждое научное открытие. Но на первых порах ученые древности часто впадали в антропоморфизм, подразумевающий наличие человеческих свойств у объектов и животных. Эту ошибку совершает каждый, кто усматривает в поведении своих питомцев проявление человеческих эмоций и чувств. (Этому же заблуждению подвержены голливудские сценаристы, полагающие, что другие планеты, движущиеся вокруг звезд, обязательно должны быть населены существами, похожими на нас.)

Антропоморфизм — давняя проблема. Ионийский философ Ксенофан некогда сетовал: «Люди полагают, что боги должны рождаться, иметь одежду, голоса и формы, подобные людским…

И, конечно, боги эфиопов черны и

плосконосы, боги фракийцев — рыжеволосы и голубоглазы». В последние десятилетия некоторые космологи пришли в ужас, обнаружив, что в их сферу деятельности антропоморфизм прокрался под маской антропного принципа, сторонники которого открыто заявляли, что не прочь привести Бога обратно в науку.

На самом деле есть несколько научных плюсов в этой странной полемике об антропном принципе, вращающейся вокруг неоспоримого факта: даже при незначительном изменении физических констант нашей Вселенной жизнь в ней была бы невозможна. Что это — счастливое совпадение или признак действия некой Высшей сущности?

Известны две разновидности антропного принципа. Слабый антропный принцип гласит, что сам факт существования во Вселенной разумной жизни (т. е. нас) следует воспринимать как экспериментальный факт, помогающий нам понять константы Вселенной. Как объясняет нобелевский лауреат Стивен Вайнберг, «мир таков, каков он есть, по крайней мере отчасти по той причине, что в противном случае некому было бы спрашивать, почему он так устроен» [122] . Сформулированный таким образом слабый антропный принцип трудно оспорить.

122

Стивен Вайнберг «Проблема космологической константы» (Steven Weinberg, The Cosmological Constant Problem, Review of Modern Physics 61,1989), c. 6.

Для того чтобы во Вселенной существовала жизнь, требуется редкое стечение множества обстоятельств и совпадений. Жизнь, которая зависит от разнообразных и сложных биохимических реакций, легко может оказаться невозможной, стоит только изменить хотя бы чуть-чуть некоторые химические и физические константы. К примеру, при малейшем изменении констант ядерной физики нуклеосинтез и образование тяжелых элементов в звездах и сверхновых могут оказаться недостижимыми. В этом случае атомы могут стать нестабильными или неспособными создавать сверхновые. От тяжелых элементов (элементов тяжелее железа) зависит жизнь, в частности образование ДНК и молекул белка. Таким образом, малейшее изменение в ядерной физике сделает невозможным синтез тяжелых элементов в звездах Вселенной. Мы — дети звезд, но если законы ядерной физики хоть немного изменятся, тогда наши «родители» не смогут произвести на свет «потомство» (нас). Еще пример: можно с уверенностью утверждать, что развитие жизни в первичном океане заняло, вероятно, 1–2 млрд лет. Но если бы продолжительность существования протона сократилась до нескольких миллионов лет, тогда не было бы жизни. Просто не хватило бы времени, чтобы она возникла из произвольных столкновений молекул.

Другими словами, сам факт нашего существования во Вселенной и возникновения вопросов о ней означает неизбежность сложной последовательности событий. Это значит, что физические константы природы должны соответствовать определенному диапазону величин, чтобы звезды жили достаточно долго, чтобы успели образоваться тяжелые элементы для нашего организма, чтобы протоны не распадались прежде, чем успеет зародиться жизнь, и т. д. Иначе говоря, существование людей, способных задаваться вопросами о Вселенной, налагает уйму жестких ограничений на физику Вселенной — к примеру, на ее возраст, химический состав, температуру, размер и физические процессы в ней.

Высказываясь по поводу этих космических совпадений, физик Фримен Дайсон писал: «Когда мы вглядываемся во Вселенную и выявляем многочисленные события и обстоятельства в физике и астрономии, которые все вместе сложились в нашу пользу, порой создается впечатление, что Вселенная каким-то образом предчувствовала наше появление». И мы приходим к сильному антропному принципу, который гласит, что все физические константы Вселенной были придирчиво выбраны (Богом или неким Высшим существом), чтобы в нашей Вселенной могла появиться жизнь. Поскольку сильный вариант антропного принципа поднимает вопросы о сущности Бога, в кругах ученых он порождает гораздо больше споров.

Пожалуй, появление жизни могло быть вызвано слепым случаем, если бы требовалось всего несколько констант природы. Но в действительности для того, чтобы в нашей Вселенной зародилась жизнь, довольно узким диапазонам величин должен соответствовать целый ряд физических констант.

Поскольку случайности такого типа крайне маловероятны, возможно, высший разум (Бог) прицельно выбрал именно эти величины, создавая жизнь.

Первое знакомство с той или иной версией антропного принципа обычно застает ученых врасплох. Физик Хайнц Пейджелс вспоминал: «Эта разновидность логики совершенно чужда обычному подходу физиков-теоретиков к своей работе» [123] .

123

Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 377.

Поделиться с друзьями: