Гиперпространство
Шрифт:
В принципе, зная S-матрицу, мы знаем все о взаимодействиях и рассеянии частиц. При таком подходе главное — столкновения частиц друг с другом, а каждая отдельная частица не играет роли. Теория S-матрицы гласит, что самосогласованности и только самосогласованностиматрицы рассеяния достаточно, чтобы определить S-матрицу. Таким образом, фундаментальные частицы и поля были навсегда изгнаны из райских кущей теории S-матрицы. В окончательном анализе физический смысл имеет лишь S-матрица.
В качестве аналогии представим, что вам подарили сложную машину странного вида и попросили объяснить, что она делает. Редукционист сразу же схватится за отвертку и примется разбирать машину. Разбирая ее на тысячи мельчайших деталей, он надеется выяснить, как она функционирует. Но, если машина устроена слишком сложно, демонтаж только осложнит
Холист же не желает разбирать машину на части по нескольким причинам. Во-первых, изучение тысяч винтов и шестеренок может не дать ни малейшего представления о том, как работает вся машина. Во-вторых, попытки объяснить, как работает каждая крохотная шестеренка, — напрасный труд. Холисты считают, что правильнее изучать машину в целом. Они включают машину и смотрят, как двигаются и взаимодействуют друг с другом ее детали. Выражаясь современным языком, эта машина — S-матрица, а подход — теория S-матрицы.
Но в 1971 г. чаши весов заметно склонились в пользу редукционизма, когда Герард ’т Хоофт обнаружил, что поле Янга-Миллса может дать самосогласованную теорию субатомных сил. Внезапно прежние представления о взаимодействиях частиц рухнули, словно вековые деревья в лесу. Поле Янга-Миллса обеспечивало поразительное соответствие экспериментальным данным, полученным в ускорителях частиц, и привело к созданию Стандартной модели, а теория S-матрицы постепенно погрязла в малопонятной математике. К концу 1970-х гг. редукционизм как будто одержал полную и необратимую победу над холизмом и теорией S-матрицы.
Но в 1980-е гг. расстановка сил опять изменилась. Когда теории Великого объединения не смогли проникнуть в суть гравитации или получить результаты, подтверждаемые экспериментально, физики приступили к поиску новых исследовательских направлений. Отход от теорий Великого объединения начался с новой теории, обязанной своим существованием теории S-матрицы.
В 1968 г., когда теория S-матрицы находилась в зените славы, глубокое влияние на Венециано и Судзуки оказал подход, связанный с определением S-матрицы во всей ее целостности. В поисках математического представления целой S-матрицы они наткнулись на бета-функцию Эйлера. Если бы они обратились к редукционистским диаграммам Фейнмана, то не сделали бы одного из величайших открытий последних нескольких десятилетий.
Двадцать лет спустя мы видим цветение проросшего семени теории S-матрицы. Теория Венециано-Судзуки дала рост теории струн, которая в свою очередь была повторно интерпретирована с помощью теории Калуцы-Клейна как десятимерная теория Вселенной.
Таким образом, мы видим, что десятимерная теория опирается на обе традиции. Она родилась как детище холистической теории S-матрицы, однако содержит редукционистские теории Янга-Миллса и кварков. В сущности, она достаточно созрела для того, чтобы впитать оба подхода.
Десять измерений и математика
Одна из самых удивительных особенностей теории суперструн состоит в том, на какой уровень взлетела математика.
Ни одна другая теория, известная науке, не пользуется такими эффективными математическими преобразованиями на столь фундаментальном уровне. Оглядываясь назад, мы понимаем, что это необходимо, так как любая объединенная теория поля сначала должна воспринять риманову геометрию теории Эйнштейна и группы Ли из квантовой теории поля, а затем применить еще более высокую математику, чтобы сделать их совместимыми. Эта новая математика, отвечающая за слияние двух теорий, — топология, на которую возложена ответственность за осуществление, казалось бы, невыполнимой задачи устранения бесконечностей из квантовой теории гравитации.
Неожиданное введение высшей математики в физику посредством теории струн застало многих физиков врасплох. Немало ученых тайно ходили в библиотеку, чтобы заглянуть в толстые тома математической литературы и разобраться в десятимерной теории. Физик из ЦЕРНа Джон Эллис признается: «Я сам не сразу заметил, что стал все чаще заглядывать в книжные магазины и выискивать математические энциклопедии, чтобы вызубрить все эти гомологии, гомотопии и прочую математику, в которой прежде не удосуживался разобраться!» [167] Для тех, кого беспокоила неуклонно разрастающаяся брешь между математикой и физикой в нашем столетии, уже само это событие стало отрадным и исторически значимым.
167
Джон Эллис,
интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна. С. 161.Математика и физика традиционно неразделимы еще со времен древних греков. Ньютон и его современники никогда не проводили четкой границы между математикой и физикой, называли себя натурфилософами и чувствовали себя в своей стихии в отличающихся друг от друга мирах математики, физики и философии.
Гаусс, Риман и Пуанкаре отводили физике главное место как источнику новых математических методов. На протяжении XVIII–XIX вв. происходило интенсивное перекрестное опыление математики и физики. Но после Эйнштейна и Пуанкаре в развитии этих наук произошел крутой поворот. Последние 70 лет математики и физики почти не поддерживали связь друг с другом. Математики исследовали топологию N– мерного пространства и развивали такие новые дисциплины, как алгебраическая топология. Продолжая работу Гаусса, Римана и Пуанкаре, математики прошлого века создали арсенал абстрактных теорем и следствий, не имеющих никакого отношения к слабому или сильному взаимодействию. Однако физики приступили к изучению силы ядерного взаимодействия, пользуясь трехмерной математикой, известной в XIX в.
Все изменилось с появлением десятого измерения. Внезапно весь арсенал, собранный математикой за прошедший век, пригодился в мире физики. Чрезвычайно эффективные математические теоремы, давно лелеемые только математиками, обрели физический смысл. Казалось, теперь наконец зияющая брешь между математикой и физикой будет закрыта. В сущности, даже математиков ошеломил приток новых математических методов, введенных теорией. Некоторые видные математики, например Изадор Зингер из Массачусетского технологического института, заявляли, что, возможно, теорию суперструн следует рассматривать как одно из направлений математики, независимо от его физической релевантности.
Никто не имеет ни малейшего представления, почему так тесно переплелись математика и физика. Физик Поль Дирак, один из основателей квантовой теории, утверждал, что «математика способна повести нас в направлении, которое мы не выбрали бы, если бы следовали только идеям физики» [168] .
Альфред Норт Уайтхед, один из величайших математиков прошлого века, однажды сказал, что на глубинном уровне математика неотделима от физики. Однако точная причина удивительного взаимопроникновения наук остается неясной. Никто не может предложить даже рациональной гипотезы, объясняющей, почему две дисциплины обмениваются концепциями.
168
Процитировано в: Криз и Манн «Второе сотворение» (R. P. Crease and С. С. Mann, The Second Creation, New York: Macmillan, 1986), c. 77.
Часто можно услышать, что «математика — язык физики». Так, Галилео Галилей однажды сказал: «Никто не сумеет прочесть великую книгу Вселенной, не понимая ее языка — языка математики» [169] . Однако вопрос о причинах остается открытым. Более того, для математиков, вероятно, оскорбительна мысль о том, что вся их наука сводится к семантике.
Отмечая взаимосвязь наук, Эйнштейн полагал, что математика в чистом виде может оказаться одним из средств разгадки тайн физики: «Я убежден, что чисто математические построения помогают нам открывать концепции и законы, связывающие их, и дают нам ключ к пониманию природы… Следовательно, в некотором смысле я считаю правильными представления древних о том, что чистая мысль может постичь реальность» [170] . Гейзенберг эхом повторял ту же мысль: «Если природа подводит нас к математическим формам удивительной простоты и красоты… с которыми никто прежде не сталкивался, невозможно не думать, что они „истинны“, что в них открываются подлинные свойства природы».
169
Процитировано в: Энтони Зи «Пугающая симметрия» (Anthony Zee, Fearful Symmetry, New York: Macmillan, 1986), c. 122.
170
Процитировано в: Энтони Зи «Пугающая симметрия» (Anthony Zee, Fearful Symmetry, New York: Macmillan, 1986), c. 274.