Чтение онлайн

ЖАНРЫ

Google Analytics: как максимизировать прибыль?
Шрифт:

Также специальные индивидуальные параметры используются для тестирования объявлений, кампаний.

Совет №18. Использование расчетных показателей.

Аналогичным образом, по мере роста вашей квалификации расчетные показатели, могут стать частью вашего опыта работы с Google Analytics. Это всего лишь еще один способ, с помощью которого Google Analytics дает вам возможность улучшить анализ и измерение данных.

В качестве примера, где вам могут понадобиться расчетные показатели. Например, это дает возможность получать более

подробные данные о доходе вашей торговой кампании. Включена ли доставка, упаковка? В стандартных отчетах Google Analytics по электронной коммерции (или расширенной электронной коммерции) это не отображается. Таким образом, вы можете, если хотите, создать расчетный показатель в разделе Доходность – Доставка- Дополнительные расходы.

Его легко настроить по мере того, как данные станут доступными. Например, расчетный показатель относительного дохода на одного пользователя можно установить, используя {{Revenue}} / {{User}}.

Совет №19. Использование фильтров.

Чтобы сделать анализ более направленным применяют фильтры.

В основном, они используются для разделения данных на более мелкие группы. Вы можете использовать их для включения в анализ определенных наборов данных, исключения наборов, а также для поиска или замены определенных данных.

Создать фильтры не сложно. Можно создать все фильтры на уровне аккаунта, войдя в панель администратора (нажмите шестеренку в нижней части страницы), а затем назначить их для различных представлений. Сначала всегда нужно использовать для этого Sandbox (или Test) View, а затем применять его непосредственно для работы.

Примеры применения фильтров:

Включение в анализ внутренних IP.

Исключение внутренних IP.

Исключить трафик с определенных хостов.

Поиск по нижнему регистру.

URL-адреса нижнего регистра.

Исключение определенных субдоменов и т.д.

Совет №20. Настройка пользовательских оповещений.

В Google Analytics можно создавать пользовательские предупреждения. Для этого:

Войти в Google Analytics.

Открыть доступ к отчетам.

Открыть отчет.

Выбрать Настройка > Пользовательские оповещения.

Нажмите Управление оповещениями.

Нажмите + Новое оповещение.

Затем вы просто настраиваете оповещение для отслеживания того, что вы хотите контролировать. К примеру, отправка сигнала о резком падении или росте трафика, конверсий или покупок. Это хороший способ мониторинга, чтобы вовремя обнаружить ошибки на сайте. Вы также можете получить хороший инструмент для контроля тестов a/b. Оповещения оперативно сообщают о какой-либо проблеме в вашем тесте, если пойдет что-то не так.

Совет №21. Использование выборки данных.

Иногда Google Analytics берет случайную выборку ваших данных по которой трудно сделать вывод о ее точности.

Сэмплирование

или создание выборки – это задача, с которой обычно сталкиваются, если есть большой объем трафика или исследуется очень узкий сегмент аудитории. Выборки используются, когда изучение всего объема данных непрактично или невозможно. Обратите внимание на правый угол скриншота приведенного ниже отчета.

В зависимости от настроек, отчет представляет выборку с данными с разной точностью. Если выборка основана на 90%+ ваших данных, это воспринимается как более или менее репрезентативная выборка. Когда анализ проводится на основе <25% ваших данных, стоит задуматься о дополнительных приемах изучения трафика и обработки данных. Есть много возможностей:

Настройка диапазона данных.

Использовать стандартные отчеты.

Создание новых представлений с помощью фильтров.

Изменения кода отслеживания.

Использование API Google Analytics.

Использование Google Analytics Premium или Adobe Analytics.

Использовать BigQuery.

Если вы не можете позволить себе Premium или BigQuery, и у вас есть требуемые технические знания, используйте API Google Analytics для получения более детальных отчетов и их комбинацию для общей картины поступающих данных. Если вы регулярно сталкиваетесь с проблемой репрезентативности большого объема данных, может оказаться полезным рассмотреть применение сервиса, подобного BigQuery. Это довольно большая тема, по этой ссылке более подробная статья о выборках от Moz.

Совет №22. Анализ данных с использованием языка R.

Изучение языка R позволяет лучше анализировать данные Google Analytics. Получить другой взгляд на статистику. R поможет вам получить выборку прошлых данных. Он также дает возможность создавать понятные визуализации, автоматизировать отчеты, создавать полезные интерактивные приложения и запускать модели, которые не так-то просто сделать в Excel.

Например, в R вы можете:

Создавать отчеты о пользователях с помощью кластеризации и PCA/факторного анализа.

Строить "тепловые карты" по времени суток с отличной наглядностью представления данных.

Построение моделей атрибуции Маркова.

Тепловая карта трафика для Google Analytics

Этот совет не относится только к Google Analytics, так как R (или подобные ему языки программирования, ориентированные на статистику) поможет вам в других вопросах. Знание этого языка расширит ваши аналитические возможности.

Совет №23. Используйте данные о поиске на сайте для нового контента.

Как узнать, что именно пользователи хотят видеть на вашем сайте? Об этом может рассказать ваша поисковая панель.

Достаточно посмотреть, что ищут люди (при условии, что у вас есть настройка поиска по сайту). Вам нужно просто перейти к пункту Поведение > Поиск по сайту > Поисковые запросы.

Это даст вам некоторое представление о потребностях и интересах пользователей. Кроме того, можно попытаться определить наличие явной тенденции в поиске.

Для этого нужно провести сравнение различных периодов времени, а затем отсортировать по параметру "Абсолютное изменение", изменив значение по умолчанию. Это покажет вам, какие запросы стали появляться чаще по сравнению с предыдущим периодом (и если есть что-то стоящее в этом, возможно, вам нужно подумать о создании контента вокруг этой темы):

Поделиться с друзьями: