Химия завтра
Шрифт:
Потому так трудно разобраться во всех тонкостях процесса горения, а разобраться крайне необходимо. Горение — цепь химических реакций, сопровождаемых выделением энергии. Им пользуется вся армия тепловых двигателей. О реакциях в пламени особенно важно, как можно больше знать инженерам, строящим самолеты и ракеты — самые скоростные машины нашего века. Тогда они смогут подчинить себе бушующее пламя, сделать так, чтобы использовать топливо возможно лучше.
Надо добиться возможности регулировать по нашему желанию скорость сгорания топлива, вмешиваться в ход реакции, улавливать, если нужно, таинственные промежуточные продукты, которые остаются невидимками, возникая и
Так проблема пламени оказывается связанной с долговечностью двигателей. Связана она и с химией.
Химические превращения, идущие обычно медленно, в плазме совершаются мгновенно. Побочные реакции обычно не принимают в расчет. Однако здесь они начинают играть решающую роль. Удается получить такие соединения, которые иначе трудно либо вовсе невозможно получить. Удается вовлечь в химический кругооборот такие элементы, которые при обычных температурах использовать можно лишь с большим трудом.
Нагретые газы могут реагировать не только между собой — они взаимодействуют и с твердыми веществами. Это происходит в двигателях — поршневых и турбинных, воздушно-реактивных и ракетных. В них сгорает топливо и образуются потоки сильно нагретых и быстротекущих газов, идет каскад сложнейших реакций с участием газообразных и твердых веществ. Это и химическая лаборатория, и, пожалуй, даже химический завод в миниатюре.
«Энтузиасты утверждают, что реактивный двигатель является прообразом химического завода будущего», — пишет американский ученый Райденауэр.
Правда, в двигателях вся «продукция» выбрасывается на ветер, хотя и не без пользы, конечно. Энергия, освобожденная при сгорании, движет самолеты и ракеты, и самолет летит намного быстрее звука, а ракета преодолевает притяжение Земли.
Но уже научились извлекать пользу из струй горящего газа для нужд земных. Можно, оказывается, прямо из пламени вылавливать ценные вещества — промежуточные продукты горения.
Нельзя ли их заставить работать еще эффективнее? Раз они особенно активны, то, быть может, имеет смысл извлечь их из одной реакции и подключить в другую. Тогда пойдут такие превращения, которые обычно не происходят. Мы сумеем получить вещества, какие до сих пор получить не удавалось.
Молекулы в пламени дробятся на осколки, группы атомов. На ничтожную долю секунды они освобождаются от своих связей внутри молекулы, становятся свободными радикалами. Одни из них появляются и тотчас исчезают, на смену им возникают другие. Реакция не затухает, она разрастается, захватывая все новые и новые молекулы.
Неустойчивые, исчезающие, как только они сделают свое дело, свободные радикалы послужат в руках химиков еще одним орудием для управления ходом реакций.
Свободные радикалы оказались той отмычкой, которая открывает многие двери. Они способны заставить вступить в цепную реакцию обычно устойчивые молекулы. С их помощью можно регулировать величину молекулярных построек, когда создаются полимеры.
Уже рождается еще один виц химического реактора — плазмотрон. В нем работает разреженный газ, нагретый до температуры в тысячи и десятки тысяч градусов. Недаром химию плазмы называют «звездной».
Высочайший нагрев позволяет проводить реакции без катализаторов и давлений и вдобавок быстро, минуя многие промежуточные этапы, Можно получать окислы азота из воздуха. Можно получать и полимерные материалы, и металлоорганические соединения.
Плазмохимик является одновременно и плазмо-металлургом. Плазменной струей можно резать, сваривать, распылять и наплавлять металл, наносить на него
всевозможные защитные покрытия. Металлурги мечтают о том, как плазма сделает ненужными гигантские металлургические агрегаты, а металлургию позволит полностью автоматизировать, включая плавку.Плазмотрон — это еще и бурильщик, прокладывающий скважины и даже большие туннели в горных породах.
Газовый разряд, при котором образуется плазменная газовая струя и при высоких температурах идут сложные процессы — молекулы распадаются на осколки, — вот что происходит в плазмотроне. Вместо нейтральных молекул получается смесь ионов, свободных радикалов и других частиц с высокой энергией. В струе плазмотрона могут происходить реакции, невозможные при обычных для химии температурах.
Когда в плазменную струю попадает другой газ, менее нагретый, он перемешивается и тоже становится участником превращений. Эти превращения протекают в тысячные, десятитысячные и даже еще меньшие доли секунды. За такие ничтожные промежутки времени успевает совершиться распад одних, перестройка и создание других соединений. Поэтому плазмохимия есть одновременно и химия высоких скоростей.
Только при высокой скорости и можно задержать участников реакции лишь настолько, чтобы получить нужные «горячие» частицы и не дать им измениться. Плазмохимия есть одновременно и химия горячих атомов.
Но ведь получив вещество в плазмотроне, надо его сохранить, чтобы оно не разложилось в той же сильно нагретой газовой струе. Для этого применяют быстрое охлаждение, причем именно в той зоне плазмы, где это нужно, и именно в тот момент, когда это нужно. Конечно, рассчитать работу плазмотрона могут только быстродействующие электронно-вычислительные машины. Только они в состоянии наилучшим образом определить технологию процессов, длящихся мгновения.
Сейчас плазма возникает в плазмотроне, а в будущем, возможно, «химическую» плазму станут получать, как отходы в термоядерных реакторах, а также под действием ядерного излучения.
«Совершенно новой областью знания становится химия неорганических веществ при высоких температурах — 3000–5000 °C. Уже сейчас изучение химических процессов в электрической плазме приобретает острый практический интерес. В будущем, когда будет решена проблема управляемой термоядерной реакции и когда такие температуры будут «отходами производства», проведение химических реакций при температурах 3000–5000° сделается, вероятно, основным в ряде технологических процессов, в частности при получении азотных удобрений», — говорит академик Н. Н. Семенов.
Химия высоких скоростей и высоких температур — новая глава в этой древней науке. И, кто знает, сколько увлекательных открытий предстоит сделать тем, кто занимается ими!
Новые открытия сулят и продвижение далеко вниз по температурной шкале. Уже выяснилось, что замороженные вещества могут реагировать между собой на глубоком холоде. Притом быстро, иногда далее быстрее, чем жидкости и газы при температурах повышенных. Хотя это кажется невероятным даже ученым, но, видимо, появился принципиально новый путь создания полимеров.
Оказалось, что свободные радикалы — те самые, что возникают при высоких температурах, — можно заморозить, и при сверхнизких температурах они живут уже не тысячные доли секунды, а намного дольше. Отсюда намечается путь, например, к топливу для ракетных двигателей невиданных мощностей. Энергия освобождается при рекомбинации свободных радикалов — при слиянии их в устойчивые молекулы.
Возможно, в будущем появится еще и химия низких и сверхнизких температур — криохимия.