Идеальная теория. Битва за общую теорию относительности
Шрифт:
Неопределенность по поводу компонентного состава Вселенной, ее возраста, геометрии и основных составляющих существовала годы и даже десятилетия. Выдвигались различные предположения, каждое со своими плюсами и минусами, и космология как наука превратилась в вопрос эстетических предпочтений с приверженцами, выбирающими теории по личному вкусу. А в результате победила самая неприятная из всех теорий. За несколько месяцев новая модель, известная как согласованная модель, или модель «Лямбда-CDM», укрепила свои позиции. Это был коктейль из атомов, холодной темной материи и космологической константы. Это была Вселенная, на которую в течение десяти лет указывала крупномасштабная структура, но которую практически никто не был готов принять. Даже Пиблс с его нежеланием следовать за толпой был поражен тем, как сложились кусочки мозаики. И все это случилось благодаря результатам наблюдений, в точности согласно словам его учителя. Пиблсу пришлось признать: «Лучшим объяснением того, что показывают нам экспериментальные данные, является космологическая
В 2000 году, прекратив преподавать в Принстоне, Джим Пиблс начал много ходить пешком и фотографировать природу. Он получал удовольствие от красоты, а порой и необычности попадавшихся ему птиц, ведь теперь у него было на это время. Отвлекшись от узоров, вычерчиваемых на небе галактиками, и способов их вращения, он пропадал в окружающей красоте рощ и лесов. Именно наблюдательность и внимание к деталям позволили ему поучаствовать в превращении космологии в точную науку. Еще один аспект общей теории относительности был доработан и получил собственную жизнь. Тихие и настойчивые попытки Пиблса, его «писанина», как он любил выражаться, перенесли проблему изучения крупномасштабной структуры Вселенной в центр физики и астрофизики. Индивидуалист по своей природе, он инициировал движение к странной модели Вселенной, которая стала общепринятой: Вселенной, в которой 96% энергии находится в некоем темном состоянии, эдакой комбинации темной материи и космологической константы. Если вспомнить, с чего он начинал почти пятьдесят лет назад, это был сюрреалистический поворот событий.
Сейчас космологическая константа общепринята. Фундаментальная проблема никуда не делась: гигантское несоответствие предсказания, сделанного Зельдовичем путем сложения энергии всех виртуальных частиц во Вселенной, и реально наблюдаемого значения. Несоответствие составляет более ста порядков. Однако если в прошлом оно мешало космологам даже думать о возможности введения космологической константы, то теперь они ее признали. Она неизбежно присутствовала в данных. В своем учебнике релятивистской астрофизики, написанном в 1967 году, Яков Зельдович и Игорь Новиков писали: «Согласно легенде, после того как джинна выпустили из бутылки, загнать его обратно можно только с большим трудом». В этой аналогии есть истина. Теперь, после общего сдвига в сторону согласованной модели, настала пора всерьез взяться за космологическую константу.
А может быть, и нет. Следующее усилие в попытке снова избавиться от космологической константы породило новый тип сущности, раздвигающей пространство. Это экзотическое новое поле, частица или вещество вело себя очень похоже на космологическую константу, но скоро все начали называть его «темной энергией». Были и до сих пор есть большие надежды на темную энергию и ее возможное применение для связывания успехов наблюдательной космологии с творческим подходом физики частиц и квантовой теории. Молодые и старые космологи в массовом порядке занялись этой темой; на одной конференции докладчик продемонстрировал слайды с более чем ста различными моделями темной энергии — свидетельство творческих способностей нового поколения космологов. Тем не менее даже введение темной энергии не решает поднятую Зельдовичем проблему — слишком большую, чтобы быть приемлемой, энергию вакуума. Здесь снова возобладало стремление сделать вид, что никакого расхождения не существует. Решение этой проблемы могло бы стать причиной революции в квантовой теории гравитации.
Подъем физической космологии в последние сорок лет изменил наш взгляд на пространство-время и Вселенную. Анализируя общую теорию относительности в самом большом масштабе и тщательно изучая крупномасштабные свойства Вселенной, Джим Пиблс и его современники открыли совершенно новое окно в реальность. Наряду с колоссальными успехами в создании карт галактик и реликтового излучения их работы подарили нам странную Вселенную, полную экзотических объектов, природа которых до сих пор практически не изучена. Это совсем не похоже на космологию 1960-х, «крайне скромную» науку, как называл ее Пиблс, всего с тремя учеными. Современная космология явила собой один из самых больших успехов общей теории относительности Эйнштейна и всей современной науки, поднимая по поводу Вселенной множество вопросов и давая на них ответы.
Глава 12.
Конец пространства-времени
Должность Лукасовского профессора математической физики в Кембридже Стивену Хокингу предложили в 1979 году. Одна из самых престижных академических должностей в мире, которую занимали Исаак Ньютон и Пол Дирак, теперь была предложена молодому (не достигшему сорока) релятивисту. Но Хокинг ее заслужил. За почти два десятилетия исследований он внес изрядный вклад в теории, касающиеся рождения Вселенной и физики черных дыр. Его главным достижением, без сомнения, стало доказательство того, что черные дыры излучают энергию, обладают энтропией и температурой и в конечном счете испаряются. Излучение Хокинга застигло мир физики врасплох. Предполагалось, что черные дыры являются исключительно поглощающими объектами с крайне простой структурой. Взяв за основу гипотезу Яакова Бекенштейна, Хокинг показал, что черные дыры должны обладать изрядной энтропией, которая пропорциональна не объему, как в остальных известных нам физических системах, а площади их горизонта
событий. При этом всех занимал вопрос о механизме реализации энтропии в черной дыре. По большому счету, все надеялись, что ответ сможет дать теория квантовой гравитации.Но создавалось впечатление, что поиски квантовой гравитации зашли в тупик. К моменту Оксфордского симпозиума 1975 года, на котором Хокинг объявил об открытии излучения черных дыр, стало очевидно, что общая теория относительности не допускает перенормирования и переполнена бесконечностями, от которых никак не избавиться. Этим общая теория относительности принципиальным образом отличалась от остальных теорий фундаментальных взаимодействий, не позволяя применять общепринятые методы, использовавшиеся при построении стандартной модели частиц и взаимодействий. Следовало предпринять что-то нетривиальное, и у Хокинга с коллегами возникло множество разных идей. К концу 1970-х область квантовой гравитации захлестнул вал новых представлений и методов, в следующие десятилетия ставших причиной глубокого разлада. Противоборствующие лагеря увлеченно цеплялись за собственные правила квантования общей теории относительности, безапелляционно отвергая все прочие варианты. Сообщество работающих в области квантовой гравитации физиков разделилось на враждующие племена, вовлеченные в самую настоящую войну. Тем не менее в этой бурной и беспокойной обстановке родилась общая точка зрения, означающая, что от старого представления пространства-времени в виде сплошной среды следует отказаться, приняв принципиально новый взгляд на реальность.
Стивен Хокинг принадлежал к людям, не боящимся делать смелые и противоречивые заявления, зачастую пророческие, а порой и шутливые. Приняв должность Лукасовского профессора, Хокинг в своей вступительной лекции «Близок ли конец теоретической физики?» высказал мнение о будущем физики. Он провозгласил, что «цель теоретической физики может быть достигнута в не самом отдаленном будущем, например к концу века». С точки зрения Хокинга, объединение законов физики с квантовой теорией гравитации было не за горами.
Для столь смелого утверждения были веские причины, и основывались они на перспективной разработке новой концепции — суперсимметрии. Концепция подразумевала наличие в природе глубокой симметрии, неразрывно связывающей все частицы и взаимодействия во Вселенной. Предполагалось, что для каждой частицы существует ее обратный близнец: каждому фермиону соответствует бозон, и наоборот. Теория, впервые предложенная в 1976 году, продвинула суперсимметрию на шаг вперед, породив супергравитацию. Когда Хокинг читал свою лекцию, супергравитация казалась решением, которого все ждали: перспективным кандидатом на квантовую теорию гравитации. Но концепция оказалась неудобной. Она увеличивала количество измерений пространства-времени, требуя серьезного усложнения предложенных Эйнштейном уравнений. Любые вычисления занимали месяцы, а результаты были переполнены бесконечностями и частицами, не вписывающимися в общую картину. Хотя небольшая группа энтузиастов продолжала разрабатывать эту концепцию, ее все же перестали считать теорией квантовой гравитации. До предсказанного Хокингом конца теоретической физики было еще далеко.
При всем оптимизме вводной лекции в Кембридже в 1979 году перед Хокингом встала странная проблема, с которой он столкнулся, разрабатывая идею излучения черных дыр. Эта проблема сопровождала все попытки квантования гравитации и в пух и прах разбила один из базовых догматов физики. Хокинг воспользовался встречей в особняке богатого промышленника Вернера Эрхарда, чтобы познакомить с ней группу избранных коллег.
Деньги и славу Эрхард получил, проводя в разных городах Соединенных Штатов курсы самосовершенствования. Он попадал под влияние как ученых мужей, так и религий — от дзен-буддизма до саентологии, имея при этом склонность к физике.
Каждый год он организовывал серию лекций, приглашая к себе знаменитых физиков, например Хокинга и Ричарда Фейнмана. В 1981 году, получив приглашение, Хокинг решил рассказать о странном явлении, которое в 1976-м он описал в статье и которое с того времени не давало ему покоя. На самом деле доклад делал один из молодых аспирантов Хокинга, так как сам он к этому времени уже был лишен способности говорить. Доклад назывался «Исчезновение информации в черной дыре».
Предметом обсуждения стала священная вера физиков в возможность при наличии полной информации о физической системе восстановить ее прошлое. Представьте пролетающий у вас над головой мяч. Зная, как быстро и в каком направлении он перемещается, можно точно определить, откуда он прилетел и мимо каких объектов пролетал в процессе своего движения. Или возьмем контейнер, заполненный молекулами газа. Если удастся измерить положение и скорость каждой молекулы, можно определить местоположение всех частиц в произвольный момент времени в прошлом. Чем ситуации более реалистичны, тем они обычно более сложны. Рассмотрим, к примеру, ноутбук, при помощи которого я писал эту главу. Для точной реконструкции этапов его изготовления мне потребуется много информации об окружающем мире, но в принципе законам физики такая возможность не противоречит. На еще более высоком уровне сложности обладание всей информацией о квантовом состоянии позволяет установить прошлое этого состояния. Фактически это жестко прописано в законах квантовой физики: информация сохраняется всегда. Именно она является основой прогнозирования, поэтому физики крепко держатся за фундаментальное правило, гласящее, что информация никогда не уничтожается.