Чтение онлайн

ЖАНРЫ

Инопланетяне и инопланетные общества. Руководство для писателя по созданию внеземных форм жизни
Шрифт:

До недавнего времени обычно предполагалось, что такая вторичная (но по-прежнему ранняя) атмосфера будет во многом похожа на первичную атмосферу, но в ней будет мало чистого водорода и гелия — иными словами, она будет состоять из метана, аммиака, углекислого газа и водяного пара. (Вы заметите, что в списке подозрительно не хватает элементарного кислорода.) И теория, и имитационные эксперименты указывают на то, что при наличии океанов воды под слоем такой атмосферы энергия, поступающая из источников наподобие солнечного ультрафиолетового излучения и электрических бурь вызвала бы химические реакции с образованием сложных органических молекул, которые в геологически приемлемые сроки привели бы к появлению того, что мы называем жизнью.

Ещё одна модель, недавно завоевавшая популярность, изображает раннюю Землю с атмосферой, насыщенной углекислым газом и азотом.

Это не так благоприятно для «собственного производства» органических молекул, но в настоящее время дополнительно существуют доказательства того, что они иногда образуются в космосе и могли быть занесены сюда кометами и метеоритами. Другие модели предполагают, что жизнь могла зародиться не в океанах, а в глинах (которые представляют собой почвы, состоящие из очень мелких частиц).

Чтобы определить, какой из этих процессов (или, возможно, какой-то другой, ещё не идентифицированный!) был причиной зарождения жизни на Земле, потребуются дополнительные исследования. И в то же время писатели-фантасты вольны рассматривать любой из них как вероятно происходящий в каком-то месте и, возможно, играющий определённую роль в сюжете.

А теперь, как насчёт этой кислородной атмосферы? На самом деле, конечно, наша атмосфера состоит из кислорода всего на 20 процентов, а большая часть остального приходится на азот. (Атмосферу, содержание кислорода в которой будет значительно больше, мы сочли бы токсичной.) Но кислород — это та её часть, которую мы используем самым непосредственным образом, в самых больших количествах, и без которой попросту не можем обойтись. Вспомните, что он не был важной составной частью ни в одной из ранних атмосфер, которые мы рассматривали. Любой элементарный кислород, который там существовал, проявлял бы тенденцию к связыванию в такие соединения, как вода и углекислый газ. Так как же получилось, что он стал вторым по распространённости компонентом нашей нынешней атмосферы?

Ответ: Это производное жизни, а не предварительное условие для её появления. Самым ранним формам жизни на Земле приходилось обходиться без него, но некоторые из них выделяли его как побочный продукт фотосинтеза. Поскольку кислород обладает высокой реакционной способностью, он склонен окислять, или соединяться со многими другими веществами, что, как правило, препятствует накоплению в атмосфере большого количества кислорода. (Отсюда термин «восстановление» как нечто противоположное окислению, то есть, соединению чего-то с кислородом.) Это было хорошо для ранних форм жизни, поскольку они относились к числу объектов, которые могли подвергнуться окислению. (Мы тоже из их числа; как писал Карл Саган в книге «Разумная жизнь во Вселенной», «Мы, земные организмы, самым натуральным образом живём в ядовитом газе».)

Однако одним из лучших восстановителей является водород, который также является самым лёгким из всех элементов и, следовательно, тем, кто легче всего улетучивается из атмосферы в форме простого вещества. Ультрафиолетовое излучение иногда расщепляло молекулы в ранней атмосфере, и выделяющийся таким образом водород иногда улетучивался. Таким образом, на протяжении длительных периодов времени количество водорода в атмосфере уменьшалось, а количество кислорода в форме простого вещества медленно возрастало. В итоге эволюция дала начало другим организмам, которые могли использовать кислород для извлечения большего количества энергии из пищи. Таким образом, наш мир постепенно приближался к ситуации, которую мы сейчас считаем «нормальной» — с окислительной атмосферой, которая поддерживается за счёт равновесия между дышащими кислородом животными и выделяющими кислород растениями. Для многих самых ранних организмов эта атмосфера была бы очень ядовитой, и переход к ней, пусть даже это был медленный процесс, вполне мог бы рассматриваться (по крайней мере, с их точки зрения) как величайшая экологическая катастрофа в истории нашей планеты.

ИНОПЛАНЕТНЫЕ АЛЬТЕРНАТИВЫ

Какие из свойств жизни, описанные на настоящий момент, являются универсальными особенностями всей жизни, а какие — лишь местными особенностями нашего конкретного вида жизни? Этот вопрос представляет особый интерес для писателей-фантастов, потому что наша работа заключается в том, чтобы исследовать как можно более широкий спектр возможностей.

Несколько лет назад я присутствовал на коллоквиуме под названием «Существует ли в других мирах неводная жизнь?» в известном океанографическом институте. Название было несколько сокращено для благозвучия; реальной темой речи выступающего была жизнь, химия которой не основана на углероде

с водой в качестве реакционной среды. Мне и большей части аудитории он показался слишком решительно настроенным поверить в то, что ответ на его вопрос — отрицательный. В какой-то момент для подкрепления этой позиции, он поднял «Справочник по химии и физике».

— Просто не существует другого элемента, — провозгласил он, — который мог бы образовывать такое же огромное разнообразие сложных соединений, как углерод. Только посмотрите, как много страниц этой книги посвящено соединениям углерода и как мало — соединениям всего остального.

— Но разве не может быть так, — спросил один дерзкий слушатель, — что на количество страниц, посвящённых углероду, мог повлиять тот факт, что эта книга была составлена исследователями на углеродно-водной основе?

Этот вопрос показался мне очень хорошим. Естественно, люди, вся жизнь которых основана на реакциях углерода, протекающих в воде, склонны считать их самой интересной областью химии. С другой стороны, справедливости ради стоит отметить, что углерод действительно обладает исключительной, если не совершенно уникальной способностью образовывать сложные молекулы, которые нужны жизни. Действительно ли эта способность уникальна, или существуют иные способы сделать это?

Кремний — это единственный кандидат, который выглядит подающим какие-то надежды. Его химия во многих отношениях аналогична химии углерода, и его преимущество заключается в том, что он встречается в большом количестве, особенно на небольших планетах вроде Земли или Марса. Однако сам по себе он не так хорошо подходит для образования длинных цепочек, как углерод, и при температурах, близких к земным, он образует скорее твёрдые кристаллические структуры. Некоторые организмы используют такие соединения кремния из-за их жёсткости в структурах типа панцирей, но в целом это недостаток — жизни нужна гибкость.

Однако «хребет» «органической» молекулы не обязательно должен состоять из атомов только одного вида. Кремний может образовывать длинноцепочечные молекулы со свойствами, лучше отвечающими потребностям жизни, которые называются силиконами, когда чередуется с кислородом; при этом метильные (СН3) группы присоединяются к силиконам вдоль цепочки, как показано на рисунке 4-2. Пол Андерсон и другие предположили, что жизнь, основанная на силиконах, может возникнуть в условиях жаркого климата на планете. Айзек Азимов сделал ещё один шаг вперёд в этом предположении: фтор мог бы заменить водород, образуя «фторсиликоны», которые могли бы послужить основой для жизни в ещё более горячих мирах. (Фтор образует исключительно прочные связи, поэтому его соединения могут сохранять стабильность при более высоких температурах, чем аналогичные соединения других элементов.)

Как писателю-фантасту, вам может быть полезным знать, что такие возможности существуют. Однако если вы хотите сделать значительно больше, чем просто упомянуть о них вскользь, вам нужно внимательнее изучить их химический состав. Это большей частью выходит за рамки данной книги, и на самом деле эти конкретные возможности настолько экзотичны, что даже химику, вероятно, пришлось бы провести ряд исследований, прежде чем сказать о них что-то достаточно определённое. Я не собирался писать эти слова для того, чтобы отговаривать вас от использования таких идей; в данный момент условием является ваша готовность выполнить необходимую домашнюю работу. Писателям часто советуют: «Пиши то, о чём знаешь». Реже слышен, но от этого не становится менее важным вердикт иного рода: «Если ты этого не знаешь — выучи!» В ходе написания работы из области научной фантастики вам часто придётся подробно разбираться с чем-то таким, чего вы ещё не знаете. Так что вам следует быть готовыми открывать новые для себя области; при этом способы знакомства будут варьировать от стандартных справочников до интервью со специалистами.

РИСУНОК 4-2 Часть цепочки силикона.

Однако вам придётся решать, какой объём исследований вы хотите провести в каждом конкретном случае. Если вам посчастливилось быть биохимиком, то возможно, что вы захотите заняться чем-нибудь столь же амбициозным, как разработка целой биохимии и экологии мира, в котором они основаны на фторсиликонах, как это сделал Хол Клемент. Если же у вас есть лишь элементарные знания по химии, и вы хотите, чтобы разумный объём художественного произведения был написан за разумное время, то вам, вероятно, лучше держаться на более знакомой территории.

Поделиться с друзьями: