Чтение онлайн

ЖАНРЫ

Инопланетяне и инопланетные общества. Руководство для писателя по созданию внеземных форм жизни
Шрифт:

РАБОЧИЕ ИНСТРУМЕНТЫ

Вам нужно будет знать, как минимум, основы того, каким образом астрономы собирают данные о звёздах и планетах — отчасти потому, что часть описательной картины понятна только в свете методов наблюдений, использованных для её сбора, а отчасти потому, что некоторым из ваших персонажей, возможно, придётся пользоваться теми же методами в ваших произведениях. Если у вас есть корабль, полный людей-исследователей, обсуждающих, стоит ли пытаться совершать посадку на какой-то планете, им придётся узнать о ней как можно больше на расстоянии. И вам придётся хотя бы в общих чертах рассказать о том, как они это делают.

Телескопы

До недавнего времени практически всё, что мы знали о звёздах и планетах, было получено путём наблюдения за ними в телескопы

с поверхности Земли. По сути, телескоп — это некая комбинация линз и/или зеркал, которая создаёт изображение того, на что она направлена. Иногда это изображение наблюдают напрямую, но для Большой астрономии оно чаще фиксируется на фотопластинке. Распространённое заблуждение о телескопах заключается в том, что их основное назначение — увеличивать изображение. Они это делают, и это важно для близких объектов вроде Луны и планет нашей собственной Солнечной системы; но в астрономии их важнейшая задача — собрать как можно больше света. Известно, что астрономы неуважительно называют особенно большой и дорогой телескоп «хорошим ведром для света».

Если не считать нашего собственного Солнца (я часто использую слово «солнце» с маленькой буквы для обозначения звезды, вокруг которой вращается любая планета), все звёзды находятся настолько далеко, что даже при самом большом увеличении, которое мы можем получить с помощью наземных телескопов, их изображения остаются просто точками, а не видимыми дисками. Какие-то планеты, которые могли бы составлять им компанию, были бы совершенно невидимы. Что может сделать для звезды телескоп, так это сделать её изображение значительно ярче. Это важно потому, что такие большие расстояния также означают, что свет звёзд большей частью очень слабый. Подавляющее большинство звёзд на небе невидимо невооружённым глазом — даже за городом, где в ясную ночь вы можете увидеть пару тысяч вместо двух или трёх, которые, возможно, будут всем, что вы сможете увидеть в большом городе.

Звёзды, которые мы можем увидеть невооружённым глазом — это очень малая выборка тех, что существуют за пределами нашего мира, и эта выборка далеко не репрезентативна. Чтобы мы смогли видеть их отсюда, они должны быть относительно близкими или необычайно яркими. Многие из тех, которые выглядят ярче всего — звёзды с хорошо знакомыми названиями вроде Сириуса, Бетельгейзе или Антареса, — и яркие по своей природе, и близкие. По причинам, о которых вы скоро узнаете, яркие от природы звёзды с наименьшей вероятностью оказываются в числе обладателей планет, на которых может существовать жизнь; так что «пришельцы с Антареса» практически однозначно выдают писателя, который не выполнил свою домашнюю работу.

НАУЧНЫЕ ОБОЗНАЧЕНИЯ И ЕДИНИЦЫ ИЗМЕРЕНИЯ

Учёным, особенно физикам и астрономам, часто приходится иметь дело с настолько большими или малыми величинами, что использовать для их записи обычные числа нерационально. Чтобы избежать неловкости, когда пишешь такие вещи, как 3,121,000,000,000,000 или 0,0000000000096, они используют научную систему счисления, в которой любое число записывается как произведение «обычного» числа, чаще от 1 до 10, и 10, возведённых в некоторую степень. «10 в n-й степени» означает «10, умноженное само на себя n раз» и обычно пишется «10n». Например, 100 = 102; 10 000 = 104 и так далее. 10 само по себе равно 101.

Умножение разных степеней одного и того же числа (или основания) несложно: вы просто складываете показатели. Таким образом, 102 x 104 = 106. Чтобы разделить, вы вычитаете показатели: 106 ? 104 = 102. Эти правила позволяют вам получить значение отрицательных показателей: 104 ? 106 = 10– 2 = 0,01. Таким образом, длинные, трудночитаемые числа из предыдущего абзаца записываются более компактно и ясно как 3.121x1015 и 9.6x1012.

Для измерений учёные обычно пользуются метрическими единицами — либо системы МКС (метр, килограмм и секунда), либо СГС (сантиметр, грамм и секунда). В этой книге я буду большей частью следовать этой практике и предполагать, что вы изучали метрическую систему в школе; если же нет, ознакомьтесь с ней! Однако, поскольку многие из моих читателей — американцы, и им не так удобно иметь дело с метрическими измерениями,

как следовало бы, я также буду иногда использовать английские единицы измерения, особенно если я пытаюсь выразить яркую мысленную картину чего-либо.

Существует также несколько специальных единиц, которые широко используют астрономы и спектроскописты. Длины волн (см. рис. 3-1), особенно те, которые относятся к частям спектра, в которые входят инфракрасные лучи, видимый свет, ультрафиолетовые и рентгеновские лучи, часто выражаются через единицу ангстрем (1 A = 10– 8 см = 10– 10 м).

Расстояния в границах Солнечной системы иногда выражаются в астрономических единицах (1 а.е. = средний радиус земной орбиты). В дальнейшем, при разговоре о других планетных системах, мы часто будем принимать многие величины, связанные с Землёй и Солнцем, и их взаимосвязью (такие, как масса, радиус орбиты и продолжительность года), численно равными 1. Как вы увидите в разделе «Вводный курс по созданию миров», в этом есть своё преимущество — такой подход легко даёт нам прямые сравнения других планет с нашей собственной.

Большие расстояния, например, между звёздами, часто измеряются с помощью одной из двух специальных единиц измерения. Световой год — это расстояние, которое проходит свет за один земной год. Поскольку скорость света (часто обозначаемая как c) очень близка к 3x108 м/сек, или 186 000 миль/сек, световой год — это около 9,46x1015 метров, или 5,87x1012 миль.

Парсек (сокращенно «пк») — это сокращение от слов «параллакс» и «секунда». Он основан на простейшем методе измерения расстояний, а именно, на наблюдении объекта с двух точек зрения и измерении угла между двумя лучами зрения. Это метод, который вы используете в течение всего времени вашего бодрствования: ваш мозг измеряет угол между лучами зрения, когда два ваших глаза смотрят на один и тот же объект. Принцип измерения астрономического параллакса тот же, но две точки обзора — это не два глаза, а разные точки на орбите Земли на её пути вокруг Солнца. Парсек эквивалентен 3,26 световым годам. (Будьте особенно внимательны: световые годы и парсеки — это всегда меры расстояния. Это ни в коем случае не единицы времени, и использовать их в этом качестве, — это верный признак неподготовленности или небрежности писателя-фантаста!)

Температура измеряется в градусах Цельсия (C) или Кельвина (K). В обеих шкалах используется градус одинаковой величины (1,8 градуса по шкале Фаренгейта), но нулевые точки у них разные. 0° C — это точка замерзания воды, а абсолютный ноль (самая низкая возможная [или почти возможная] температура) равен -273° C. 0° K — абсолютный ноль, а вода замерзает при +273° K. Разница между двумя шкалами безусловно важна, когда речь идёт о поверхностях планет, но часто не имеет особого значения для звёзд, где температура составляет не менее 3000 градусов по любой из шкал.

Поскольку с увеличением расстояния свет становится «менее ярким», рассеивая свою энергию на большей площади, самый простой способ получить яркое изображение такого сильно удалённого объекта, как звезда, — это собрать как можно больше его света и сфокусировать его весь на изображении. Это основная функция телескопа и та причина, по которой в делах, касающихся телескопов, при прочих равных условиях, чем больше, тем лучше. Свет, допустим, с Денеба, падает на всей площади Земли с одинаковой интенсивностью (энергия на единицу площади за единицу времени). Яркость изображения, создаваемого телескопом, определяется общей энергией, поступившей в фокус, и это просто интенсивность, умноженная на площадь основной линзы или зеркала (объектива) телескопа. Полностью открытый глаз человека обычно собирает свет из круглой области диаметром около 6 мм, поэтому 50-миллиметровый бинокль или телескопический объектив (как в биноклях 7 x 50) формирует изображение примерно в 70 раз ярче, чем вы можете увидеть без него. Двухсотдюймовый телескоп на горе Паломар даёт вам выигрыш в яркости более чем в 700 000 раз, или примерно на четырнадцать звёздных величин. Иными словами, это позволяет вам видеть звёзды величиной вплоть до примерно двадцатой, а не до шестой. (Здесь подразумевается прямое визуальное наблюдение, которым профессиональные астрономы пользуются редко. На самом же деле они находятся в ещё большем выигрыше и видят ещё больше звёзд, невидимых в ином случае, когда фиксируют их изображения с длительной выдержкой на чувствительных фотопластинках или плёнке.)

Поделиться с друзьями: