Чтение онлайн

ЖАНРЫ

Интернет-журнал "Домашняя лаборатория", 2007 №11
Шрифт:

7. Кодоны

Почти все формы жизни на Земле используют один и тот же генетический код, ключом к которому служат кодоны. Если нуклеотидные основания в ДНК представить в виде букв генетического кода, то кодоны будут словами, а ген — последовательностью кодонов, образующих предложение. Согласно основному посылу (центральная догма) [занесенного] в ген выражения (экспрессии гена), сообщение от ДНК записывается на мРНК (матричную РНК), которое затем переносится на белки.

Для уяснения работы кодонов рассмотрим ее подробно.

? Последовательность содержащихся в ДНК нуклеотидных оснований задается чередованием аденина,

тимина, цитозина и гуанина, обычно обозначаемых буква ми А, Т, Ц и Г.

? мРНК переписывает нуклеотидные основания ДНК в том же порядке на рибосому, лишь заменив тиминна урацил. В рибосоме происходит сборка белков нанизыванием друг на друга аминокислот (см.: Список идей, 5. Аминокислоты). Порядок следования аминокислот в белке определяет тРНК (транспортная РНК), передающая исходный порядок следования нуклеотидных оснований в ДНК.

Но каким образом четыре нуклеотидных основания определяют, какую из 20 аминокислот необходимо брать при построении белка?

? Если бы каждое нуклеотидное основание задавало одну аминокислоту, можно было бы собрать лишь четыре аминокислоты.

? Если бы два нуклеотидных основания совместно зада вали одну аминокислоту, выходило бы 42 = 16 аминокислот.

? Если бы три нуклеотидных основания совместно задавали одну аминокислоту, можно было бы получить 43 = 64 аминокислоты, а этого более чем достаточно.

Таким образом, кодон должен представлять собой триплет — три идущих вместе основания.

Троичная природа кодона нашла опытное подтверждение в 1961 году благодаря работе Фрэнсиса Крика.

Выяснением вопроса, какие триплеты нуклеотидных оснований определяют аминокислоты, занялся в 1961 году американский биохимик Маршалл Ниренберг, установивший, что УУУ кодирует аминокислоту фенилаланин.

Последующие опыты Ниренберга и других ученых к 1966 году помогли установить полное соответствие между кодона-ми и аминокислотами.

В таблицах приводятся трехбуквенные кодоны и соответствующие им аминокислоты, присоединяемые к выстраиваемой РНК белковой молекуле, а также нуклеотидные основания РНК (У, Ц, А и Г), а не ДНК (Т, Ц, А и Г). Инициирующий [АУГ или ГУГ] и терминирующий [сокр. терм; это УАА (охра-кодон), УАГ (янтарь-кодон) и УГА (опал-кодон)] [трансляцию] кодоны указывают на начало и завершение транскрипции РНК.

Заметим, что большинство аминокислот задается не одним кодоном. Такая избыточность нередко означает, что одна и та же аминокислота задается независимо от того, какое азотистое основание находится на третьем месте в кодоне. Поскольку именно третье положение часто неверно считывается, подобная избыточность сводит к минимуму последствия от ошибок в считывании.

8. Укладка белков

Белки, плод усилий ДНК, РНК и белковых ферментов, несут на себе бремя жизни — в буквальном и переносном смысле. На два вида белков, из-за своего строения названных глобулярными [округлыми] и фибриллярными[37] [вытянутыми], возложены многочисленные обязанности:

? Ферментный катализ. Глобулярные белки точно подлаживаются под определенные молекулы, вызывая жизненно необходимые химические реакции.

? Защита. Различные глобулярные белки берегут от определенных молекул, которые «подстраиваются» под облик белков.

? Транспортировка. Другая разновидность

глобулярных белков занимается доставкой небольших молекул, опять же исходя из облика белка. Например, гемоглобин имеет полость, подстроенную под молекулу кислорода, переносит кислород через кровь и при необходимости «сгружает». Представьте, что случится, если молекула угарного газа займет полость в гемоглобине и «застрянет» там и гемоглобин уже не сможет доставлять кислород.

? Обеспечение волокнами. Коллаген — самый распространенный фибриллярный белок у позвоночных животных. Это молекулярная основа костей, связок, сухожилий и кожи.

? Движение. Молекулы актина и миозина обладают способностью скользить, обеспечивая сокращение мышц.

? Регуляция. Белки выступают в качестве поверхностных рецепторов клетки и внутренних регуляторов поведения гена вроде lac-репрессоров (см. гл. 4).

Внешний облик белка имеет решающее значение при выполнении многих задач, и он далеко не прост. Если длинную нить аминокислот, составляющих белок, уподобить волокну, то функциональный облик белка можно уподобить замысловатой корзине, сплетенной из этого волокна.

Сложное, трехмерное устройство белков впервые заметили в 1930-е годы, когда У. Т. Астбури получил различные рентгенограммы дифракционных полос натянутого человеческого волоса. Американский химик Лайнус Полинг, работая с Робертом Кори в 1951 году, основываясь на знании химических связей, предположил, что самые простые белковые молекулы имеют спиралевидное (а) или складчатое (Р) строение.

(В Англии Джеймс Уотсон и Фрэнсис Крик боялись, как бы Полинг раньше их не открыл строение ДНК. Оказалось, что Полинг работал с неверными данными и в итоге предпочел тройную спираль для ДНК вместо двойной, которую предложили Уотсон и Крик в 1953 году, имея на руках блестящие данные рентгенограмм Розалинды Франклин.)

Вскоре после выступления Полинга и Кори датский биохимик К. Линдерстрем-Ланг предложил четырехуровневое строение белка, исходя из теоретических соображений (см. рис. 3.6). Современный уровень знаний позволил добавить еще два уровня, о которых мы поговорим, рассмотрев вначале некоторые опытные данные.

В 1957 году химик Джон Кендрю после завершения в Кембриджском университете (Великобритания) большой работы с использованием методов рентгеноструктурного анализа определил точное трехмерное строение белка миоглобина, доставляющего кислород к мышцам. Посмотрев на итоговые результаты, Кендрю заметил: «Пожалуй, более всего эту молекулу отличают упорядоченность и отсутствие всякой симметрии». Все дело в том, что белки обычно имеют скрученное, витое трехмерное строение. Даже опытным исследователям нужно приложить немало усилий, чтобы усмотреть в моделях белков некие закономерности. Вот почему столь ценно знание многоуровневой организации белков.

Первичная структура белка определяется цепью аминокислот, собираемых РНК согласно «чертежу» ДНК. У белка со 100 аминокислотами каждое место может занимать любая из 20 аминокислот, так что в итоге можно получить 20100 совершенно различных белков. Столь огромная величина (10130), превышающая число атомов обычного вещества во Вселенной, свидетельствует о невероятном многообразии белков.

Вторичную структуру представляет а-спираль и складчатый (?-слой [?-тяж], как и предполагал Полинг. Эти структуры возникают вследствие притягивания положительно заряженных участков молекулы к отрицательным участкам той же молекулы и иных электрических воздействий.

Поделиться с друзьями: