Интернет-журнал "Домашняя лаборатория", 2007 №4
Шрифт:
Отношение один-ко-многим
Хорошим примером отношения между таблицами один-ко-многим является отношение между авторами и названиями книг (таблицы AUTHORS и TITLES), так как каждый автор может иметь отношение к созданию нескольких книг. Связь между таблицами AUTHORS и TITLES осуществляется с помощью совпадающих полей Au ID в обеих таблицах.
Аналогичное отношение существует между издательствами и названиями изданных книг, организацией и работающими в ней сотрудниками, автомобилем и деталями, из которых он состоит и т. п. Понятно, что подобный тип отношения между таблицами наиболее часто встречается при
Отношение много-к-одному
Отношение много-к-одному полностью аналогично рассмотренному выше отношению один-ко-многим.
Отношение много-ко-многим
При отношении между двумя таблицами много-ко-многим каждая запись в одной таблице связана с несколькими записями в другой таблице и наоборот. Иллюстрацией такого отношения может служить отношение между таблицами PUBLISHERS и AUTHORS. С одной стороны, каждое издательство может публиковать книги разных авторов и с другой стороны — каждый автор может публиковаться в разных издательствах.
Для удобства работы с таблицами, имеющими отношение много-ко-многим, обычно в базу данных добавляют еще одну таблицу, которая находится в отношении один-ко-многим и много-к-одному к соответствующим таблицам. В случае базы данных BIBLIO.MDB такой таблицей является TITLE AUTHOR.
Нормализация баз данных
Рассмотрим процесс нормализации базы данных на примере базы данных BIBLIO.MDB. Вообще говоря, все данные о книгах, авторах и издательствах можно разместить в одной таблице, названной, например, BIBLIOS. Структура этой таблицы показана на рис. 1.11.
Рис. 1.11. Структура таблицы BIBLIOS.
В принципе, можно работать и с такой таблицей. С другой стороны понятно, что такая структура данных является неэффективной. В таблице BIBLIOS будет достаточно много повторяющихся данных, например сведения об издательстве или авторе будут повторяться для каждой опубликованной книги. Такая организация данных приведет к следующим проблемам, с которыми столкнется конечный пользователь вашей программы:
Наличие повторяющихся данных приведет к неоправданному увеличению размера файла базы данных. Кроме нерационального использования дискового пространства, это также вызовет заметное замедление работы приложения.
Ввод пользователем большого количества повторяющейся информации неизбежно приведет к возникновению ошибок.
Изменение, например, номера телефона издательства потребует значительных усилий по корректировке каждой записи, содержащей данные об издателе.
Если, при проектировании приложения для работы с базами данных, вы организуете свои данные таким нерациональным образом, то в дальнейшем вам, скорее всего, больше не поручат решение аналогичных задач.
Чтобы избежать всех этих проблем, надо стремиться максимально уменьшить количество повторяющейся информации. Процесс уменьшения избыточности информации в базе данных посредством разделения ее на несколько связанных друг с другом таблиц и называется нормализацией данных.
Вообще говоря, существует строгая теория нормализации данных, в рамках которой разработаны алгоритмы уменьшения избыточности информации, определены несколько
уровней нормализации и установлены критерии, определяющие соответствие данных определенному уровню нормализации. Знакомство с теорией нормализации данных выходит за рамки этих уроков и тем читателям, которым интересно побольше узнать об этом, можно посоветовать обратиться к специальной литературе.Для того, чтобы построить достаточно эффективную структуру данных, достаточно придерживаться нескольких простых правил:
1. Определите таблицы таким образом, чтобы записи в каждой таблице описывали объекты одного и того же типа. В нашем случае библиографические данные можно разместить в трех таблицах:
PUBLISHERS — содержит информацию об издательствах;
AUTHORS — содержит информацию об авторах книг;
TITLES — содержит информацию об изданных книгах.
2. Если в вашей таблице появляются поля, содержащие аналогичные данные, разделите таблицу.
3. Не запоминайте в таблице данных, которые могут быть вычислены при помощи данных из других таблиц.
4. Используйте вспомогательные таблицы. Например, если в вашей таблице есть поле Страна, то может быть стоит ввести вспомогательную таблицу Country, которая будет содержать соответствующие записи (Россия, Украина, США и т. п.). Этот прием также поможет уменьшить количество ошибок при вводе данных, допускаемых пользователями.
Ключи и индексы
Как было отмечено выше при описании отношений между таблицами, в реляционных базах данных таблицы связываются друг с другом посредством совпадающих значений ключевых полей. Ключевым полем может быть практически любое поле в таблице. Ключ может быть первичным (primary) или внешним (foreign).
Первичный ключ однозначно определяет запись в таблице. В примере с базой данных BIBLIO.MDB таблицы PUBLISHERS, AUTHORS и TITLES имеют первичные ключи PubID, Au ID и ISBN соответственно. Таблица TITLES также имеет два внешних ключа PubID и Au ID для связи с таблицами PUBLISHERS и AUTHORS. Таким образом, первичный ключ однозначно определяет запись в таблице, в то время как внешний ключ используется для связи с первичным ключом другой таблицы.
Ключевой поле может иметь определенный смысл, как например ключ ISBN в таблице TITLES. Однако, очень часто ключевое поле не несет никакой смысловой нагрузки и является просто идентификатором объекта в таблице. Во многих случаях удобно использовать в качестве ключа поле счетчика (Counter field). При этом вся ответственность по поддержанию уникальности ключевого поля снимается с пользователя и перекладывается на процессор баз данных. Поле счетчика представляет собой четырехбайтовое целое число (Long) и автоматически увеличивается на единицу при добавлении пользователем новой записи в таблицу.
Данные запоминаются в таблице в том порядке, в котором они вводятся пользователем. Это, так называемый, физический порядок следования записей. Однако, часто требуется представить данные в другом, отличном от физического, порядке. Например может потребоваться просмотреть данные об авторах книг, упорядоченные по алфавиту. Кроме того, часто необходимо найти в большом объеме информации запись, удовлетворяющую определенному критерию. Простой перебор записей при поиске в большой таблице может потребовать достаточно много времени и поэтому будет неэффективным.