Чтение онлайн

ЖАНРЫ

Интерстеллар
Шрифт:

В марте 2014 года, когда я писал эту книгу, команда Джеми Бока [59] , космолога из Калтеха, кабинет которого находится рядом с моим, наконец обнаружила этот след в реликтовом излучении [60] (рис. 16.10).

Рис. 16.10. Аппарат BICEP2 (построен командой Джеми Бока), с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год. Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след – поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов

59

Если

перечислять всех руководителей исследовательской команды, то это сам Джеми, его тогдашние постдокторанты Джон Ковач (сейчас в Гарварде) и Чао-Лин Куо (сейчас в Стэнфорде), а также Клем Прайк (сейчас в Университете Миннесоты). Прим. автора.

60

Как было сказано в примечании к главе 1, результаты этих экспериментов до сих пор не окончательно приняты научным сообществом. Прим. науч. ред.

Это совершенно потрясающее открытие, но есть один спорный момент: след, найденный командой Джеми, мог быть вызван не гравитационными волнами, а чем-то еще. Во время подготовки этой книги к печати ведется напряженная работа по выяснению этого момента.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной. Оно подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов – инфляционно быстрым. Оно возвещает наступление новой эры в космологии.

Итак, потешив мою страсть к гравитационным волнам, разобравшись, как с их помощью можно было обнаружить червоточину в фильме, а также изучив свойства червоточин, особенно червоточины в «Интерстеллар», мы готовы к путешествию на другую сторону этой червоточины. К путешествию, где мы познакомимся с планетой Миллер, планетой Манн и космолетом «Эндюранс».

V. Исследуем окрестности Гаргантюа

17. Планета Миллер

Первая планета, на которую высаживаются Купер и его команда, – это Миллер. Ее наиболее впечатляющие особенности – сильное замедление времени, гигантские волны и мощнейшая приливная гравитация. Эти три особенности связаны между собой и проистекают из близости планеты к Гаргантюа.

Орбита планеты

По Кип-версии, планета Миллер расположена в области, помеченной на рис. 17.1 синим кольцом, очень близко к горизонту Гаргантюа (см. главу 6 и главу 7 ).

Рис. 17.1. Искривленное пространство вблизи Гаргантюа, вид из балка, одно пространственное измерение опущено. Также показана орбита планеты Миллер и орбита «Эндюранс», ожидающего возвращения десанта

Искривленное пространство здесь имеет форму поверхности цилиндра. На рисунке поперечные сечения цилиндра – это окружности, длина которых не меняется вне зависимости от расстояния до Гаргантюа. На самом деле, если вернуть опущенное измерение, эти поперечные сечения – сфероиды, тоже одинакового размера.

Так чем же это положение на цилиндре отличается от других? Что в нем особенного?

Ключ к ответу – искривление времени, которое на рис. 17.1 не показано. Вблизи Гаргантюа время замедляется, и это замедление усиливается по мере приближения к горизонту событий Гаргантюа. Следовательно, согласно эйнштейновскому закону искривления времени (см. главу 4 ), при приближении к горизонту гравитация становится сверхсильной. На рис. 17.2 красная кривая, обозначающая силу гравитационного поля, около горизонта резко уходит вверх. Центробежная сила, которую испытывает планета (синяя кривая), изменяется более плавно. В результате кривые пересекаются в двух точках – положения, где центробежная сила и сила гравитационного притяжения, действующие на вращающуюся вокруг Гаргантюа планету, уравновешены.

Рис. 17.2. Гравитационные и центробежные силы, действующие на планету Миллер

Во внутренней точке равновесия орбита планеты нестабильна: если планета чуть-чуть сместится в сторону от Гаргантюа (например, под воздействием гравитации пролетающей мимо кометы), центробежная сила возобладает и вытолкнет планету наружу. Если же она сместится к Гаргантюа, возобладает сила гравитации, и планета начнет падать к черной дыре. Это означает, что во внутренней точке равновесия

планета Миллер долго не продержится.

Внешняя точка равновесия, напротив, стабильна: если планета Миллер, находясь там, сместится от Гаргантюа, сила гравитации «перевесит» и подтянет ее обратно. Если же планета сместится к Гаргантюа, «перевесит» центробежная сила и вернет планету на место. Поэтому планета Миллер, согласно Кип-версии, располагается именно в этой точке [61] .

Замедление времени и приливная гравитация

61

Центробежная сила зависит от углового момента планеты; он является мерой ее орбитальной скорости и не меняется вдоль всей ее орбиты (см. главу 10). Изображая на рис. 17.2 зависимость силы от расстояния до Гарантюа, я считаю угловой момент планеты Миллер постоянным. Если бы он был чуть меньше взятого значения, величина центробежной силы тоже была бы повсюду меньше, две кривые на рис. 17.2 не пересекались бы и при отсутствии точек равновесия планета упала бы в черную дыру. Поэтому положение планеты Миллер на рис. 17.1 и 17.2 – ближайшее к Гаргантюа из стабильных; я выбрал его, чтобы получить максимально возможное замедление времени. Другие подробности см. в приложении «Некоторые технические примечания» в конце книги. Прим. автора.

Орбита планеты Миллер – самая близкая к черной дыре из всех стабильных круговых орбит вокруг Гаргантюа. Таким образом, это орбита с максимальным замедлением времени. На семь земных лет приходится один час на планете Миллер – время там течет в 60 000 раз медленнее, чем на Земле! Именно это и нужно было Кристоферу Нолану.

Однако такая близость к Гаргантюа означает, что на планету Миллер действуют чудовищные силы приливной гравитации Гаргантюа. Настолько чудовищные, что они почти разрывают планету на части (см. главу 6 ). Почти, но не совсем. Вместо этого они просто деформируют планету, и деформируют значительно (рис. 17.3), так, что она сильно вытягивается в направлениях к черной дыре и от нее.

Рис. 17.3. Приливная деформация планеты Миллер

Если бы планета Миллер смещалась относительно радиального направления к Гаргантюа (то есть не была повернута к дыре все время одной и той же стороной), то и приливные силы смещались бы относительно планеты. Сначала планета сминалась бы с запада и востока и растягивалась от севера к югу. Затем, через четверть оборота (относительно радиального направления к Гаргантюа), сминалась бы с севера и юга и растягивалась от запада к востоку. Эти сжатия и растяжения были бы просто огромны по сравнению с прочностью мантии планеты (ее твердых наружных слоев). Мантия была бы стерта в пыль, а затем возникший от трения жар раскалил бы планету докрасна. Но Миллер выглядит вовсе не так! Вывод ясен: в Кип-версии планета всегда развернута к Гаргантюа одной и той же стороной (рис. 17.4), или почти одной и той же (мы обсудим это после).

Рис. 17.4. Орбитальное движение и вращение планеты Миллер относительно отдаленных звезд. Красная точка на поверхности планеты и приливная выпуклость всегда направлены к Гаргантюа

Пространственный вихрь

Законы Эйнштейна утверждают, что если смотреть издалека, например с планеты Манн, планета Миллер будет двигаться вокруг Гаргантюа по орбите длиной в миллиард километров, делая один оборот в течение 1,7 часа. Это приблизительно половина скорости света! Экипаж «Рейнджера», замеряя орбитальный период, из-за замедления времени получает в 60 000 раз меньшее значение – десятую долю секунды. Десять оборотов вокруг Гаргантюа за одну секунду – вот это скорость! Так что же, планета летит быстрее света? Нет, это не так. Дело тут в пространственном вихре, порожденном быстрым вращением Гаргантюа. Относительно завихряющегося пространства вблизи планеты и времени, измеренного там же, скорость движения планеты меньше световой, и только это имеет значение в плане запрета на сверхсветовую скорость.

Поскольку планета (в Кип-версии) всегда повернута к Гаргантюа одной и той же стороной (рис. 17.4), она должна вращаться вокруг своей оси с той же частотой, что и кружится по орбите, – десять оборотов в секунду. Как она может вращаться столь быстро? Неужто центробежные силы не разорвут ее на части? Нет, не разорвут – и снова благодаря пространственному вихрю. Планета не почувствует разрушительных центробежных сил, если будет вращаться в точности с той же скоростью, с которой вблизи нее завихряется пространство. А почти так оно и есть. Поэтому центробежные силы, возникающие при вращении планеты, в действительности слабы. Но если бы планета, напротив, не вращалась относительно отдаленных звезд, она бы вращалась с частотой десять оборотов в секунду относительно пространственного вихря и была бы разорвана центробежными силами. Странная штука эта относительность.

Поделиться с друзьями: