Исаак Ньютон. Его жизнь и научная деятельность
Шрифт:
В то время Ньютон произвел немало опытов, имевших целью обратное соединение известных лучей в бесцветные. Простейший способ состоит в том, чтобы к призме приложить другую такую же призму, так как обе вместе образуют тело с параллельными гранями, причем лучи, пройдя сквозь это тело, принимают направление, параллельное тому, которое они имели с самого начала. Ньютон старался пояснить соединение цветных лучей более популярными, хотя и менее научными способами. Так, он вращал круги, оклеенные цветными секторами, а также смешивал разноцветные порошки. При смешении сурика с синькой, охрой и зеленой краской получилась грязно-белая смесь; но при ярком освещении такого порошка, рассыпанного по полу, Ньютон достиг того, что он казался белее бумаги. Этот опыт был уже переходом к изучению цвета тел.
Освещая предметы разными цветными огнями, получаемыми, например, при помощи цветных фонарей, Ньютон заметил, что всякий цвет выигрывает, то есть кажется более ярким от освещения
Как и следовало ожидать, теории Ньютона не были приняты без борьбы. Тотчас вслед за письмом Ньютона, где излагались его главные открытия по оптике, появилось в тех же “Известиях” Лондонского королевского общества письмо французского иезуита Пардиса, профессора математики в Клермоне. Иезуит этот пытался объяснить явления преломления, исходя из опытов Гримальди над светорассеянием, – мысль блестящая и совершенно в духе гипотезы волнообразного движения, но доказательство ее оказалось не по силам Пардису, и, убежденный возражениями Ньютона, он уступил его доводам и прислал по этому поводу весьма лестное письмо. Еще более слабы были возражения люттихского врача Линюса; но они привели к тому, что один из его учеников, Гаскойн, решился вместо голословной полемики взяться за опыты, и по его просьбе опыт был сделан талантливым ученым Люкасом в Люттихе. Люкас описал свои опыты в статье, где отдает должное Ньютону и подтверждает все его результаты кроме одного. Хотя призма Люкаса имела такой же преломляющий угол, как у Ньютона, но была, очевидно, сделана из стекла другого качества. В то время как у Ньютона длина спектра превышала ширину в пять раз, у Люкаса длина была больше ширины лишь в три с половиной раза. Опыты Люкаса были первым шагом к открытию ахроматических стекол, которые, преломляя свет, то есть изменяя направление лучей, не дают, однако, ни цветных лучей, ни цветной окраски рассматриваемым предметам. Очевидно, что такое явление невозможно с двумя однородными призмами, но если взять призмы из различных сортов стекла, то можно подобрать их так, что две вместе взятые призмы дадут ахроматическое преломление. Этого и достигли Голль, Доллонд и Блэр уже после смерти Ньютона.
В вопросе об ахроматизме Ньютон обнаружил упорство, недостойное такого великого ума. Так, вместо того чтобы проверить опыты Люкаса, он прямо заявлял, что, вероятно, Люкас ошибся в измерении углов, и наконец сказал: “Я не желаю отвлекаться в сторону и повторять опыты по вопросу, достаточно уже исследованному”. Люкас не настаивал, и полемика прекратилась.
Но самыми опасными противниками Ньютона оказались Гук и Гюйгенс. Оба эти физика по математическому таланту если и не равнялись Ньютону, то во всяком случае стояли в ряду первоклассных светил тогдашней науки. Оба они отстаивали правильную теорию света, которую Ньютон отвергал до самой смерти.
Гук являлся одним из девяноста восьми учредителей Лондонского королевского общества и всего на семь лет был старше Ньютона. Как большая часть людей талантливых, но не достигающих высоты гения, он считал себя гениальным и непогрешимым и при этом был крайне завистлив и несправедлив к заслугам других. Так, например, из всех ученых, рассматривавших телескоп Ньютона, только Гук отозвался об изобретении свысока, причем заявил, что он один обладает секретом делать превосходнейшие оптические инструменты и может приготовлять их с удивительною легкостью и точностью. Эту тайну он унес с собой в могилу.
Когда появились в печати первые оптические трактаты Ньютона, Гук как хороший экспериментатор тотчас понял, что опыты Ньютона точны; тем ожесточеннее напал он на теоретические выводы своего гениального противника. При этом, однако, Гук, хотя и исходил из правильного начала, именно из теории волнообразного движения, по обыкновению не сумел справиться со своими верными гипотезами и отвергал даже то, что было выведено Ньютоном совершенно независимо от обеих противоположных теорий. Так, Гук стал доказывать, что будто бы есть только два рода цветных лучей – красные и фиолетовые и что все остальные составляют продукт смешения двух первых. На это Ньютон возразил целым рядом опытных данных, и Гук не решился продолжать спор. Наконец Ньютону пришлось
выдержать борьбу с самим Гюйгенсом. Этот голландский ученый был уже знаменит, когда Ньютон только что стал известен ученому миру. Как математик Гюйгенс немногим уступал Ньютону. Не возражая против опытов Ньютона, Гюйгенс утверждал – и не без основания, – что белые лучи можно получить не только соединением всех цветных лучей спектра, но и соединением голубых лучей с желтыми. Ньютон на это отвечал, что в опыте Гюйгенса, вращавшего, например, желтые и голубые секторы, не было чистых желтых и голубых лучей, но смешанные цвета, дающие все лучи спектра. Гюйгенс, однако, стоял на своем и даже заметил в письме к Ольденбургу, что “Ньютон защищает свои мнения с некоторым упорством”.Эта полемика сильно раздражила Ньютона. Еще в 1672 году, после ответа, данного Гюйгенсу, он писал Ольденбургу: “Я больше не намерен заниматься философскими предметами. Надеюсь, вы не обидитесь, если увидите, что я перестал делать что бы то ни было в этой области. Думаю, что вы даже не откажетесь содействовать моему решению, по возможности устраивая так, чтобы я не получал никаких возражений и даже никаких касающихся меня философских писем”. Три года спустя Ньютон писал: “Я хотел еще написать трактат о цветах тел для прочтения в одном из ваших собраний. Но думаю теперь, что не стоит писать более об этом предмете”. В письме к Лейбницу (1675 год) он говорит: “Меня до того преследовали полемикой, возникшей из-за опубликования моей теории света, что я проклинал свою неосторожность, променяв такое блаженство, как спокойствие духа, на погоню за тенью”. Еще до этого письма, а именно в феврале 1675 года, Ньютон сообщил Королевскому обществу свою теорию “цветов естественных тел”, тесно связанную с теорией разложения лучей призмою. Выяснив, что цвет зависит от качества освещающих предмет лучей, Ньютон обосновывает затем следующие положения.
Цвет предмета определяется теми лучами, которые отражаются от его поверхности. Тела, обладающие наибольшей преломляющей способностью, как, например, свинцовый сахар, вместе с тем отражают наибольшее количество лучей. Нет тел абсолютно непрозрачных: так, тонкая пластинка золота отчасти пропускает свет. Прозрачны тела, обладающие слишком малыми порами для того, чтобы отражать лучи. Что касается, наконец, цветов тел, то Ньютон добавляет, что причина, почему отражаются лучи того или иного цвета, для массивных тел и для тончайших пластинок – одна и та же.
Как раз в тот день, когда Ньютон написал Лейбницу, что не желает более “гоняться за тенью”, он не вытерпел и отправил в Королевское общество новый философский трактат, содержавший исследование цветов тонких пластинок и, в частности, изучение оптических свойств мыльных пузырей. В виде курьеза следует отметить, что в эпоху мимолетного разочарования в философии Ньютон вздумал заняться самым прозаическим делом, а именно посадкою яблонь с целью производства фруктового кваса (сидра). Но такова была натура Ньютона, что он и к яблокам относился лишь с научной точки зрения. Сохранилось письмо, в котором он пишет о посадке яблонь и производстве сидра в таком тоне, как будто речь идет о всемирном тяготении.
Что касается мыльных пузырей, то ими занимались еще до Ньютона сначала Бойль, а потом Гук. Гук правильно описал основные явления. Он также расщеплял пластинки талька на чрезвычайно тонкие слои и убедился, что получающиеся цвета находятся в некоторой зависимости от толщины пластинок. Одна из полученных им пластинок имела желтый отлив, другая – голубой, а сложив обе вместе, он получил темно-пурпуровый цвет. Гук нашел Даже предел толщины, а именно убедился, что его пластинки имеют толщину менее одной двенадцатитысячной доли дюйма. Далее этого он не пошел и даже не мог представить себе метод, позволяющий точное измерение столь тонких пластинок. Для этого понадобился экспериментальный гений Ньютона. Ньютон взял двояковыпуклое стекло чрезвычайно малой кривизны, то есть почти плоское, а именно такое, что выпуклая поверхность составляла часть поверхности шара, имеющего радиус в пятьдесят футов. Это стекло он прижал винтами к плоской поверхности другого плосковыпуклого стекла. Таким образом, между обоими стеклами получился чрезвычайно тонкий слой воздуха, всего тоньше подле центра и толще к краям. Осветив этот прибор ярким светом, Ньютон увидел ряд концентрических темных и светлых колец; но, зная радиус выпуклого стекла, он мог без труда вычислить толщину воздушного слоя в любом месте. При освещении однородным светом, например красным, получались темные и красные кольца; белый свет давал темные кольца поочередно с радужными, но цвета радужных колец оказались не совсем такими, как в спектре.
Повторяя опыты, Ньютон увидел, что наименее преломляемые, то есть красные лучи давали самые широкие кольца, а фиолетовые – наиболее узкие. При освещении белым светом получались поэтому: в середине фиолетовое кольцо, потом синее и так далее до красного; затем темное, потом опять фиолетовое и так далее. Удовлетворительное объяснение этому явлению могла дать только теория волнообразного движения. Что касается Ньютона, он для объяснения цветов тонких пластинок должен был придумать новую гипотезу.