Истина в пределе. Анализ бесконечно малых
Шрифт:
Так, Ньютон попытался избежать использования бесконечно малых путем перехода к пределу, однако потерпел неудачу. Тем не менее его усилия стали источником вдохновения для Коши. Покажем, как следует понимать дробь 0/0, получаемую при h = 0 в выражении
необходимом для определения производной f(x) функции f в точке х. Здесь мы позволим себе небольшой анахронизм. Сам Ньютон никогда не использовал понятие производной функции, равно как и не использовал подобные обозначения, а вместо этого употреблял понятие «исчезающая величина». Таким образом, разность f(x + h) — f(x) и само число h будут исчезающими величинами: обе они «исчезают», когда h становится
Бесконечно малые величины играли в математическом анализе Лейбница заметно большую роль. Например, они фигурировали в самом определении кривой, которым пользовался Лейбниц. Для Ньютона кривая была образована точкой в движении: «Полагаю математические величины не состоящими из очень малых частей, а описываемыми непрерывным движением. Кривые, таким образом, описываются и создаются не расположением частей, а непрерывным движением точек». Лейбниц же считал, что кривые состоят из отрезков прямой бесконечно малой длины: «Чтобы найти касательную, надо провести прямую, соединяющую две точки кривой, расположенных на бесконечно малом расстоянии, или продленную сторону многоугольника с бесконечным числом углов, который для нас равносилен кривой», — писал Лейбниц в 1684 году.
Понятие кривой еще более четко описывается в книге «Анализ бесконечно малых» маркиза Лопиталя (1696). Второй постулат книги звучит так: «Будем предполагать, что кривую линию можно считать состоящей из бесконечного числа бесконечно малых линий, или, что аналогично, многоугольником с бесконечным числом сторон, каждая из которых имеет бесконечно малую длину, а кривизна линии определяется углами между этими сторонами».
Лейбниц объяснял использование бесконечно малых подобно своим предшественникам: «Выбираются столь большие или столь малые величины, чтобы ошибка была меньше данной, так что различия с методом Архимеда заключаются лишь в способе записи, но наш метод более соответствует духу изобретательства». Лейбниц попал в самую точку: в то время ученых больше интересовали открытия, а не доказательства.
Книга Беркли «Аналитик» имела подзаголовок: «Трактат, адресованный неверующему математику». Этим «неверующим математиком», скорее всего, был астроном Эдмунд Галлей, который всегда славился атеистическими взглядами и как-то заставил больного отказаться от посещения епископа Беркли, убедив его в непрочности доктрин христианства. В своей книге Беркли хотел показать, что рассуждения анализа бесконечно малых столь же непрочны, как и религиозные догмы. Второй подзаголовок книги звучит так; …где исследуется, является ли предмет, принципы и заключения более отчетливо познаваемыми и с очевидностью выводимыми, чем религиозные таинства и положения веры». Он добавлял: «Извлеки бревно из глаза своего, и сможешь извлечь соринку из глаза брата твоего».
В своей книге Беркли также приводит ряд вопросов, над которыми полагается размышлять. Процитируем некоторые из них: «Вопрос 62. Разве непостижимые тайны не могут с большим правом допускаться в божественной вере, чем в человеческой науке? Вопрос 63. Разве те математики, которые резко выступают против непостижимых тайн, когда-либо критически исследовали собственные принципы?»
«Призраки исчезнувших величин»
Несмотря на огромный шаг вперед, который позволил совершить анализ бесконечно малых Ньютона и Лейбница, критика
в адрес недостаточной прочности его основ была обоснованной.Наиболее ярым критиком был английский епископ и философ Джордж Беркли. В 1734 году он опубликовал книгу под названием «Аналитик», где в критическом духе были рассмотрены основные идеи анализа с целью продемонстрировать их недостаточную логичность.
Так, Беркли заявил, что вывод формулы для вычисления производной произведения, приведенный Ньютоном в «Началах» (см. главу 3), был ошибочным. Приведя доказательство Ньютона, Беркли пишет: «Однако очевидно, что для получения момента или приращения прямоугольника АВ прямым и истинным методом необходимо взять стороны такими, какими они получились в результате увеличения их на полные приращения, и затем перемножить их (А + а) x (В + b), а полученное произведение (АВ + аВ + bА + ab) и есть увеличенный прямоугольник. Отсюда, если мы вычтем АВ, остаток (aВ + bА + ab) и будет истинным приращением прямоугольника, превышающим тот, который был получен предыдущим незаконным и непрямым методом, на величину ab. И это справедливо в любом случае, какими бы ни были величины а и b — большими или малыми, конечными или бесконечно малыми, приращениями, моментами или скоростями».
Говоря о методе вычисления флюксий с помощью исчезающих величин, он пишет: «Правда, надо признать, что он использовал флюксии подобно лесам при строительстве здания, которые нужно было отбросить в сторону или от которых нужно было избавиться, когда уже было найдено, что конечные линии пропорциональны этим флюксиям. Но ведь эти конечные показатели определяются с помощью флюксий. Поэтому все, что получается с помощью таких показателей и пропорций, необходимо отнести за счет флюксий, которые, следовательно, предварительно надо понять. А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками исчезнувших величин?»
Эйлер и анализ бесконечно малых
Если Ньютон и Лейбниц считаются создателями дифференциального и интегрального исчисления, то Эйлера можно назвать создателем математического анализа — области математики, куда входят оба эти раздела. В этом смысле его книги «Введение в анализ бесконечно малых» (1748), «Наставление по дифференциальному исчислению» (1755) и «Интегральное исчисление» (1768—1770) сыграли ключевую роль в оформлении структуры этой новой дисциплины.
Трактат «Введение в анализ бесконечно малых» стал для математического анализа тем же, что «Начала» Евклида для геометрии. В этом трактате Эйлер указывает, что функция является основным предметом изучения в анализе, систематизирует работы предшественников об элементарных функциях, изучает их, не прибегая к дифференциальному или интегральному исчислению, однако обильно использует бесконечно большие и бесконечно малые величины (см. приложение). Он также всеми возможными способами старается избежать геометрических рассуждений и чертежей, отдавая предпочтение аналитике и формулам. Структуру дифференциального исчисления он изложил во второй книге трилогии.
Хотя Эйлер был последователем Лейбница, в «Наставлении по дифференциальному исчислению» он понимает дифференциал как разницу, однако вносит изменения в исчисление Лейбница. С учетом поправок Эйлера понятие дифференциала приближается к понятию ньютоновской «исчезающей величины».
Извечные сомнения, касающиеся бесконечно малых, Эйлер развеял так. По его мнению, важнее было не то, что такое бесконечно малые величины, а то, как они себя ведут. В этом смысле для Эйлера бесконечно малые были равны нулю или в итоге приравнивались к нулю; важнее то, что эти величины могут делиться друг на друга. Результат подобного деления, по сути эквивалентного 0/0, может равняться четко определенному конечному числу. Так, дифференциалы dx, dy играют главную роль при определении значения дроби dy/dx.. Исчисление описывает, как вычислить эту дробь, когда приращения «исчезают». В «Наставлении по дифференциальному исчислению» Эйлер описывает «метод определения пропорции исчезающих приращений, которые получают функции, когда аргументы функции получают одно из таких приращений». Иными словами, в анализе Эйлера вводится отношение приращений
определяющее производную функции — понятие, которое заменило дифференциалы dx, dy, занимающие почетное место в исчислении Лейбница. Внесенные Эйлером изменения приблизили понятия дифференциального исчисления Лейбница к понятию предела, которое впоследствии использовал Коши.
В последнем труде трилогии Эйлера, «Интегральное исчисление», интегрирование описывается как операция, обратная дифференцированию. Интегрирование по-прежнему соответствовало понятию площади, но потеряло независимый характер, который отстаивал Лейбниц, что помогло Коши при введении понятия определенного интеграла.