Чтение онлайн

ЖАНРЫ

История вычислительной техники в лицах

Малиновский Борис Николаевич

Шрифт:

Талант и труд выдающегося ученого, многих сотен работавших с ним людей, большие затраты материальных и финансовых средств остались неиспользованными...

Большую роль в быстрой реализации идей Глушкова в области вычислительной техники сыграли кадры специалистов, подготовленных Лебедевым, и в первую очередь Погребинский, участник разработки МЭСМ, отладки БЭСМ, создания ЭВМ "Киев". Путь его в науку был обычным для того времени: война, ранения, демобилизация, а затем учеба в Киевском политехническом институте. В 1948 году начал работать в лаборатории Лебедева. Ему была поручена разработка элементов, макетирование и отладка главной части МЭСМ - арифметического устройства, с чем он отлично справился. Таким неординарным было второе "боевое крещение" молодого специалиста, на этот раз не на поле боя, а в науке. Став научным руководителем работ на завершающем этапе конструирования ЭВМ "Киев", Глушков сразу обратил внимание на молодого, активного,

весьма организованного и знающего себе цену инженера.

Когда работы по ЭВМ "Киев" закончились, он назначил Погребинского главным конструктором ЭВМ "Промшь" (а затем и МИРов). Вряд ли Глушков ожидал, что его идея личной машины для инженера (сейчас ее назвали бы персональной) будет реализована в ЭВМ "Промшь" всего за восемь месяцев!

Будучи главным конструктором макроконвейерной ЭВМ, Погребинский отлично справился и с этой, вероятно, самой сложной в его жизни работой.

Быстродействие и надежность - главные параметры ЭВМ - в значительной степени определяются элементной базой: десятками и сотнями тысяч элементарных электронных схем, из которых строится ЭВМ. В разработку элементной базы первых ЭВМ ("Днепр", МИР и др.) основной вклад внес С.С. Забара. Он появился в бывшей лаборатории Лебедева в 1956 году еще до прихода Глушкова и попал в группу, эксплуатировавшую СЭСМ. Машина работала очень ненадежно.

Намучавшись с ней, он решился на отчаянный поступок. "Когда все ушли в отпуск и среди двух оставшихся я оказался старшим, - вспоминает он, - я срезал весь старый монтаж, разработал новые элементы, но смонтировать, конечно, не успел. То-то были гром и молнии, когда вернулся мой руководитель Рабинович! Но пути были отрезаны, нужно было идти напролом. И затея удалась! Это была первая, маленькая, но очень приятная победа!".

Постепенно С.С.Забара стал, как тогда говорили, "элементщиком", т.е. разработчиком элементной базы машин. Был главным конструктором элементной базы ЭВМ "Днепр", "Днепр-2", ЭВМ семейства МИР, "Искра" и др. Руководил работой по созданию системы потенциальных элементов (МИР-10), сменивших потенциально-импульсные. На элементах МИР-10 создавались все машины второго поколения, выпускаемые Министерством приборостроения СССР. (В этой работе активно участвовал А.Г. Кухарчук, разработавший базовые методы проектирования цифровых устройств на потенциальных элементах) .

Кроме "Днепров" и семейства МИР в Институте кибернетики АН Украины и СКВ института в 60-х и 70-х годах был разработан и передан промышленности целый ряд мини-ЭВМ, специализированных ЭВМ и программируемых клавишных ЭВМ: СОУ-1, "Нева", "Искра-125", "Мр1я", "Чайка", "Москва", "Скорпион", "Ромб", "Орион", "Экспресс", "Пирс", ЭВМ для спектрального анализа и др. (А.В. Палагин, А.Г. Кухарчук, Г.И. Корниенко).

Совместно с Киевским ПО им. С.П. Королева был создан и выпускался комплекс микропроцессорных средств "Нейрон" и системы отладки СО-01 - СО-04 (Б.Н. Малиновский, А.В. Палагин, В.И. Сигалов). Сотрудники института приняли участие в проектировании первой отечественной микро-ЭВМ "Электроника-С5", созданной в Ленинградском НПО "Светлана" (А.В. Палагин, В.А. Иванов).

Современные ЭВМ невозможно проектировать без систем автоматизации проектно-конструкторских работ. На основе теоретических работ Глушкова в институте был развернут широкий фронт работ и создан ряд уникальных систем "ПРОЕКТ" ("ПРОЕКТ-1", "ПРОЕКТ-ЕС", "ПРОЕКТ-МИМ", "ПРОЕКТ-МВК") для автоматизированного проектирования ЭВМ вместе с математическим обеспечением. Первоначально они реализовывались на ЭВМ "Киев", затем М-20, М-220 и БЭСМ-6 (с общим объемом в 2 млн. машинных команд), а со временем переведены на ЕС ЭВМ. Система "ПРОЕКТ-1", реализованная в М-220 и БЭСМ-6, представляла собой распределенный специализированный программно-технический комплекс со своей операционной системой и специализированной системой программирования. В ней впервые в мире был автоматизирован (причем с оптимизацией) этап алгоритмического проектирования (В.М. Глушков, А.А. Летичевский, Ю.В. Капитонова). В рамках этих систем была разработана новая технология проектирования сложных программ - метод формализованных технических заданий (А.А. Летичевский, Ю.В. Капитонова). Системы "ПРОЕКТ" разрабатывались как экспериментальные, на них отрабатывались реальные методы и методики проектирования схемных и программных компонентов ЭВМ. Эти методы и методики впоследствии были приняты в десятках организаций, разрабатывающих вычислительную технику. Заказчиком выступало Министерство радиопромышленности (ЦКБ "Алмаз" и НИЦЭВТ). Разработанные системы стали прообразом реальных технологических линий выпуска документации для производства микросхем ЭВМ во многих организациях бывшего Советского Союза.

В.М. Глушков и С.Б. Погребинский

С системой "ПРОЕКТ-1" тесно связана система автоматизации проектирования и изготовления БИС с помощью элионной технологии. В отделе, руководимом В.П. Деркачем (одним из первых аспирантов

В.М. Глушкова), были созданы установки "Киев-67" и "Киев-70", управляющие электронным лучом при обработке с его помощью различного типа подложек. Необходимо заметить, что показатели этих установок давали рекордные параметры в микроэлеронике на то время.

Системы автоматизации проектирования "ПРОЕКТ" имели коммуникационный интерфейс с "Киев-67" и "Киев-70", что позволяло выполнять сложные программы управления электронным лучом как при напылении, так и при графической обработке подложек.

Работы Глушкова, Деркача и Капитоновой по автоматизации проектирования ЭВМ были удостоены в 1977 году Государственной премии СССР.

Проблема автоматизации программирования также входила в круг основных интересов В.М.Глушкова. В работах этого направления он исходил из дальней цели полной автоматизации процесса разработки программ и ведения вычислений. Эта цель была сформулирована уже в 1957 году в статье Глушкова "Об одном методе автоматизации программирования (Проблемы кибернетики.
– 1959, No 2), где предлагались первые реальные шаги для ее достижения. Работа заканчивалась словами: "В случае реализации метода во всей его полноте машине будет достаточно "показать" бумагу с напечатанным на ней заданием (на привычном математическом языке.
– Прим. автора), чтобы машина без дальнейшего вмешательства человека начала решать задачу и выдала через некоторое время ответ". Метод специализированных программирующих программ, предложенный и развитый там же, в настоящее время реализуется в методологии построения интеллектуальных прикладных пакетов программ. В этой работе проявилась важная методологическая идея о правильном (сбалансированном) сочетании универсальных и специализированных средств при создании кибернетических систем, которая широко использовалась в дальнейшем и в других областях (архитектура ЭВМ, искусственный интеллект, системы управления).

Пути совершенствования технологии разработки программ В.М. Глушков видел в развитии алгебры алгоритмических языков, т.е. техники эквивалентных преобразований выражений в этих языках. В эту проблему он вкладывал общематематический и даже философский смысл, рассматривая создание алгебры языка конкретной области знаний как необходимый этап ее математизации. Сопоставляя численные и аналитические методы решения задач прикладной математики, Глушков утверждал, что развитие общих алгоритмических языков и алгебры таких языков приведет к тому, что выражения в этих языках

В.М. Глушков и М.А. Лаврентьев

(сегодняшние программы для ЭВМ) станут столь же привычными, понятными и удобными, какими сегодня являются аналитические вьгражения. При- этом фактически исчезнет разница между аналитическими и общими алгоритмическими методами и мир компьютерных моделей станет основным источником развития новой современной математики, как это и происходит сейчас. Поэтому, обсуждая созданную им алгебру алгоритмов, он говорил об этапах развития формульного аппарата математики от алгебраической символики Виета и символики дифференциально-интегрального исчисления Лейбница и Ньютона до современных алгоритмических языков, для которых необходимо создавать соответствующие исчисления и алгебру.

Опираясь на отечественные работы по теории и практике программирования в Москве, Новосибирске, Дубне, Ленинграде и других городах, Глушков в начале 70-х годов сформировал в стране программу работ по технологии программирования и средствам ее автоматизации. Ее реализация была задумана и организована им широким фронтом: от фундаментальных исследований и организационных мероприятий (конференций, ежегодных школ-семинаров, рабочих групп, постановлений директивных органов и пр.) до изготовления и внедрения в народное хозяйство конкретных автоматизированных систем производства программ и технологических комплексов программиста. В это время им был выполнен большой цикл работ по созданию в стране первой отечественной технологии программирования с развитыми средствами автоматизации на всех этапах изготовления программных систем. Средства автоматизации работ по этой технологии - технологические комплексы РТК - были изготовлены для всех основных машин - ЕС ЭВМ, СМ ЭВМ, БЭСМ-6, микро-ЭВМ типа "Электроника" и получили широкое внедрение. Большую роль в успешном выполнении этого цикла работ сыграл И.В. Вельбицкий.

На пути к роботам

Искусственные зрение и слух - важная часть работ в области создания искусственного интеллекта. Здесь главным, конечно, является зрение, поскольку наибольшее количество информации человек пол

учает благодаря ему. Для этого я пригласил В.А. Ковалевского из Харькова, который и организовал работу по распознаванию образов. Первым результатом его работы стал автомат для чтения машинописных букв и цифр. Он был выпущен малой серией (пять или восемь штук) из-за дороговизны, с перфокартами ему было конкурировать трудно. Затем Т.К. Винцюк занялся распознаванием речи, которым мы прикрыли направление по созданию сенсорной части роботов.

Поделиться с друзьями: