Чтение онлайн

ЖАНРЫ

История земли и жизни на ней
Шрифт:

Положение меняется в силуре, когда среди членистоногих появились крупноразмерные ракоскорпионы, а среди позвоночных – первые челюстноротые (настоящие рыбы). Судя по всему, обе эти группы возникли в опресненных прибрежных акваториях (типа лагун): здесь они были на первых порах избавлены от конкуренции с головоногими, которые избегают участков моря, «отравленных» стекающими с суши пресными водами. Именно в это время ракоскорпионы (например, Pterygotus) достигают длины свыше 2 м (а если с клешнями – то почти 3) и становятся властелинами силурийских морей – по крайней мере, их прибрежных участков (рисунок 26). Прямые головоногие не выдерживают конкуренции, и их разнообразие заметно сокращается; попытки спастись за счет гигантизма (раковины Endoceras, например, достигали 4 м в длину – хотя сам моллюск был, понятное дело, много меньше) не имели успеха.

РИСУНОК 26. Самые страшные хищники раннего палеозоя – ракоскорпион и динихтис.

Однако торжество членистоногих (в лице ракоскорпионов) оказалось недолгим, и виною тому была третья «конкурирующая корпорация» – позвоночные. До сих пор те держались в тени, и использовали лишь стратегию пассивной защиты – создание мощной наружной «брони»;

таковы были панцирные бесчелюстные – остракодермы, и панцирные рыбы – плакодермы. И вот в девоне одна из групп плакодерм – артродиры – отказалась от «бронирования корпуса» в обмен на скорость и перешла к активному хищничеству. Вот тогда-то и проявились все те – до поры скрытые – преимущества, что возникли ранее в результате превращения первой пары жаберных дуг в подвижные челюсти – великолепное средство нападения и защиты. Существа эти могли увеличивать размеры тела практически неограниченно: такие артродиры, как динихтис достигали 10 м в длину – одни из самых крупных рыб за всю историю (рисунок 26), тогда как ракоскорпионы уже «уперлись» в физиологический предел размеров для членистоногих. В итоге артродиры стали для того времени фактически «абсолютным оружием», превосходя любого противника и по вооружению, и по скорости.

Членистоногие проиграли позвоночным эту схватку за крупный размерный класс вчистую: ничего подобного двухметровым силурийско-раннедевонским ракоскорпионам среди них не появится уже никогда. Отныне они будут методично осваивать малый и средний размерный классы (длина тела самых крупных членистоногих – камчатского краба и мечехвоста – не превышает 70 см), в чем и преуспеют: это, как-никак, самый процветающий ныне тип животного царства. А вот головоногие сумели тогда дать позвоночным достойный эволюционный ответ: хотя численность придонных прямых головоногих продолжала сокращаться, суммарное разнообразие группы начиная с середины девона (эмский век) стремительно пошло вверх. К концу периода (фаменский век) оно достигло своего максимума (почти 200 родов) благодаря появлению свернутых головоногих, имеющих спирально закрученную раковину – аммонитов.

Дело в том, что прямые наутилоидеи обладали достаточно совершенным аппаратом регулирования плавучести (они меняли заполнение водою пустых камер раковины – в точности как подводная лодка заполняет и опорожняет балластные цистерны), но вот с горизонтальными перемещениями у них были большие проблемы. Головоногие движутся реактивным способом, выталкивая воду из мантийной полости через воронку, направленную вперед и располагающуюся в районе головы. Первые наутилоидеи «висели» вниз головой в придонных слоях воды и могли лишь «падать» на свою добычу сверху (рисунок 27, а). В дальнейшем они «завалили» раковину, сместив центр ее тяжести за счет неравномерного отложения карбоната кальция (на брюшной стороне больше, чем на спинной); вся конструкция в результате обрела способность к продольному движению (рисунок 27, б). Однако эта конструкция принципиально неустойчива в движении , т.к. центр тяжести и точка приложения реактивной тяги (воронка) должны находиться на противоположных концах тела животного: малейшее отклонение от линии тяги – и движущийся моллюск начнет кувыркаться. А вот у свернутых головоногих центр тяжести их спиральной раковины почти совпадает с сифоном, что и обеспечивает устойчивое продольное движение. Именно поэтому свернутые головоногие стали первой группой хищников, освоивших толщу воды. (Здесь необходимо заметить, что рыбы, например, будут продолжать «ходить по дну» почти до середины мезозоя: лишь тогда костные рыбы «изобретут» плавательный пузырь, а среди хрящевых рыб – появятся акулы современного типа, которые «не тонут» из-за того, что находятся в постоянном движении.) Видимо, именно освоение трехмерного пространства привело к возникновению у позднепалеозойских головоногих самых совершенных (среди беспозвоночных) глаз и чрезвычайно усложненного мозга – то же самое, что произойдет позднее с птицами.

РИСУНОК 27. Палеозойские и мезозойские головоногие: (а) – исходная жизненная форма головоногих (архаичная наутилоидея Mandaloceras); (б) – прямое головоногое (наутилоидея Michelinoceras); (в) – свернутое головоногое (аммонит); (г) – внутренераковинное головоногое (белемнит и его раковинвина – «чертов палец»).

Головоногие будут и дальше, на протяжении всего мезозоя, формировать верхние трофические уровни морских экосистем, успешно конкурируя не только с рыбами, но и с морскими рептилиями (ихтиозаврами, плезиозаврами и пр. – см. далее, главу 10). Многие из этих рептилий сами охотились на головоногих (в раковинах крупных аммонитов иногда находят застрявшие зубы этих хищников), а те в основном использовали стратегию пассивной защиты – увеличивая размеры тела. К юре аммониты достигли максимального своего размера, однако с появлением короткошейных плезиозавров – плиозавров, черепа которых достигали 3 м в длину, – эта стратегия себя исчерпала. Аммониты начали мельчать, пытаясь уйти за нижний предел оптимального размера жертвы (см. главу 6-а) [26] , а разнообразие их – уменьшаться.

26 Сферический сегмент – часть шара, отделенная секущей плоскостью.

И вновь головоногие нашли выход: с этого времени начинается расцвет групп, имеющих внутреннюю раковину – белемнитов и происходящих от них кальмаров. Вообще-то белемниты появились еще в карбоне, однако до сих пор они пребывали на вторых ролях. Теперь же, когда возможности пассивной защиты оказались исчерпаны, стратегия белемнитов – отказ от раковины в обмен на увеличение скорости передвижения – оказывается генеральной линией эволюции головоногих. Судя по всему, внутреннераковинные головоногие оказались самыми скоростными обитателями мезозойского океана; они, казалось бы, должны столкнуться с тою же проблемой устойчивости в движении, что и прямые головогоногие (см. выше), однако их тело, лишенное раковины, способно выравнивать «полет» при помощи плавников-стабилизаторов (рисунок 27, г). При этом отсутствие таких ограничителей роста, как твердые покровы членистоногих, позволяет им достигать очень крупных размеров. Современный гигантский кальмар достигает в длину 18 м (со щупальцами) и является самым крупным беспозвоночным (на коже китов находили отпечатки присосок кальмаров, длина которых оценивается в 30 м), а ведь в прошлом вполне могли существовать и более крупные виды! Как бы то ни было, внутреннераковинные головоногие успешно дожили до наших дней и вымирать явно не собираются. Достаточно сказать, что в пробах грунта из глубоководных частей Тихого океана число челюстей кальмаров на один квадратный метр варьирует от нескольких десятков

до нескольких сотен, что дает некоторое представление о численности (и экологической роли) этих животных в современных морях.

РИСУНОК 28. Челюсти ископаемой акулы Carcharodon megalodon.

Изменения в сообществе водных позвоночных мы подробнее проанализируем чуть позже, в главе 11. Здесь же мы лишь отметим, что с начала триаса верхние трофические уровни морских экосистем оказываются совершенно закрытыми для рыб: их формируют недавние вселенцы в море – хищные рептилии. Однако во второй половине мезозоя (примерно в одно время с началом расцвета внутреннераковинных головоногих) рыбы возвращают себе лидирующие позиции: в морях появились акулы современного типа – с челюстью, подвижной относительно мозговой капсулы, что позволяет им отрывать куски от жертвы большого размера (например, кита), а не глотать ее целиком [27] . Именно они, возможно, конкурентно вытеснили по крайней мере часть морских рептилий (например, ихтиозавров). Самые крупные акулы жили в миоцене: Carcharodon megalodon (близкая родственница знаменитой белой акулы) достигала в длину 30 м; питалось это чудовище, по всей видимости, небольшими китами, пик разнообразия которых приходится как раз на время ее существования (рисунок 28). Самые же крупные из современных хищных акул [28] (белая, тигровая) питаются в значительной степени другими акулами, являясь, таким образом, подлиным венцом трофической пирамиды.

27 Интересно, что подобную схему атмосферной циркуляции (с одной ячейкой) предполагал еще в начале XVIII века – правда, для современности – физик Дж.Гадлей, однако позже выяснилось, что атмосфера Земли организована иначе, с тремя ячейками, и о модели Гадлея забыли.

28 Апвелинг – место подьема к поверхности океана глубинных вод. Последние всегда обогащены биогенами (прежде всего – фосфором), и потому в зонах апвелингов развиваются чрезвычайно высоко продуктивные морские сообщества, и море едва не кишит рыбой. Апвелинги, развивающиеся вдоль западных побережий Южной Америки и Южной Африки (там, где к этим материкам подходят рукава Циркумантарктического течения), служат главными районами морского рыболовства.

8. Ранний палеозой: «выход жизни на сушу». Появление почв и почвообразователей. Высшие растения и их средообразующая роль. Тетраподизация кистеперых рыб.

Вплоть до самого недавнего времени человек выносил из школьного учебника биологии и популярных книг по теории эволюции такую примерно картину события, именуемого обычно «Выходом жизни на сушу». В начале девонского периода (или в конце силурийского) на берегах морей (точнее – морских лагун) появились заросли первых наземных растений – псилофитов (рисунок 29, а), положение коих в системе растительного царства остается не вполне ясным. Растительность сделала возможным появление на суше беспозвоночных животных – многоножек, паукообразных и насекомых; беспозвоночные, в свою очередь, создали пищевую базу для наземных позвоночных – первых амфибий (ведущих свое происхождение от кистеперых рыб) – таких, как ихтиостега (рисунок 29, б). Наземная жизнь в те времена занимала лишь чрезвычайно узкую прибрежную полоску, за которой простирались необозримые пространства абсолютно безжизненных первичных пустынь.

РИСУНОК 29. (а) – Реконструкция ландшафта Райни (девон Шотландии) с зарослями псилофитов; (б) – древнейшее наземное позвоночное – ихтиостега (девон Гренландии).

Так вот, согласно современным представлениям, в означенной картине неверным (или, по меньшей мере, неточным) является практически всё – начиная с того, что достаточно развитая наземная жизнь достоверно существовала много раньше (уже в следующем за кембрием ордовикском периоде), и кончая тем, что упомянутые «первые амфибии» наверняка были существами чисто водными, не имеющими связи с сушей. Дело, однако, даже не в этих частностях (о них мы поговорим в свой черед). Важнее другое: скорее всего, принципиально неверна сама формулировка – «Выход живых организмов на сушу». Есть серьезные основания полагать, что сухопутные ландшафты современного облика в те времена вообще отсутствовали, и живые организмы не просто вышли на сушу, а в некотором смысле создали ее как таковую. Впрочем, давайте по порядку.

Итак, первый вопрос – когда; когда же все-таки на Земле появились первые несомненно наземные организмы и экосистемы? Однако тут сразу возникает встречный вопрос: а как определить, что некий вымерший организм, с которым мы столкнулись – именно наземный? Это вовсе не так просто, как кажется на первый взгляд, ибо принцип актуализма здесь будет работать с серьезными сбоями. Типичный пример: начиная с середины силурийского периода в палеонтологической летописи появляются скорпионы – животные по нынешним временам вроде бы сугубо сухопутные. Однако сейчас уже достаточно твердо установлено, что палеозойские скорпионы [29] дышали жабрами и вели водный (или, по крайней мере, амфибиотический) образ жизни; наземные же представители отряда, у которых жабры превращены в характерные для паукообразных легкие «книжечного» типа (book-lungs), появились лишь в начале мезозоя. Следовательно, находки в силурийских отложениях скорпионов сами по себе ничего (в интересующем нас плане) не доказывают.

29 Скорпионы представляют собою специализированную группу уже знакомых нам (по главе 7) морских ракоскорпионов-эвриптерид, представители которой перешли от плавания к хождению по дну и, приобретя мелкие размеры, освоили сначала морскую литораль, а потом и сушу.

Более продуктивно здесь, как кажется, отслеживать появление в летописи не наземных (по нынешним временам) групп животных и растений, а определенных анатомических признаков «сухопутности». Так, например, растительная кутикула с устьицами и остатки проводящих тканей – трахеид наверняка должны принадлежать наземным растениям: под водой, как легко догадаться, и устьица, и проводящие сосуды ни к чему... Однако существует и иной – воистину замечательный! – интегральный показатель существования в данное время наземной жизни. Подобно тому, как показателем существования на планете фотосинтезирующих организмов является свободный кислород, показателем существования наземных экосистем может служить почва: процесс почвообразования идет только на суше, а ископаемые почвы (палеопочвы) хорошо отличимы по структуре от любых типов донных отложений.

Поделиться с друзьями: