Чтение онлайн

ЖАНРЫ

Как избежать климатических катастроф?: План Б 4.0: спасение цивилизации
Шрифт:

Одно время много говорилось об опасности, которую ветровая энергетика представляла для птиц. Этой опасности можно легко избежать, учитывая при постройке ветровых хозяйств миграционные пути и места кормления птиц. Кроме того, недавние исследования показали, что число птичьих смертей от ветровых турбин ничтожно мало по сравнению с количеством птиц, погибших при столкновении с машинами, от когтей кошек или налетевших на небоскребы [404] .

Некоторые критики ветровых хозяйств обеспокоены тем, что эти хозяйства портят ландшафт. И, тем не менее, речь идет о сохраняющем цивилизацию источнике энергии. Конечно, подход «только не в моем дворе» продолжает существовать, но все чаще слышно и другое — «поставьте это у меня во дворе». В сельских регионах — будь то ранчо Колорадо или фермы молочного животноводства на севере штата Нью-Йорк — уже наблюдается конкуренция за ветровые хозяйства, причем очень напряженная. Это неудивительно, поскольку местные сообщества всегда приветствуют создание новых рабочих мест, выплаты за землю под турбины и дополнительные налоговые сборы.

404

Laurie Jodziewicz, AWEA,

электронное письмо автору, 16 October 2007; GWEC and Greenpeace, Global Wind Energy Outlook 2006 (Brussels: 2006).

Центральная программа Плана Б — строительство к 2020 г. 3000 гигаватт (3 млн мегаватт) мощностей, генерирующих электричество с помощью ветра. Этого будет достаточно для удовлетворения 40 % мировой потребности в электричестве. Чтобы добиться этого, потребуется ежегодное удвоение мощностей, вместо характерного для последнего десятилетия удвоения каждые три года [405] .

Для стабилизации климата необходимо установить 1,5 млн ветровых турбин по 2 мегаватта каждая. Производство такого огромного количества турбин в ближайшие 11 лет кажется слишком сложной задачей, пока ее не сравнишь с 70 млн автомобилей, производимыми в мире каждый год. При стоимости в 3 млн долларов за установленную турбину, это строительство обойдется в 4,5 трлн долларов к 2020 г. или же 409 млрд долларов в год. Это сопоставимо с мировыми затратами на нефть и газ, которые, по прогнозам, к 2016 г. достигнут 1 трлн долларов в год [406] .

405

GWEC, op. cit. note 10, pp. 9–10.

406

Ward’s Automotive Group, World Motor Vehicle Data 2008 (Southfield, MI: 2008), pp. 239–42; “Trillions in Spending Needed to Meet Global Oil and Gas Demand, Analysis Shows,” International Herald Tribune, 15 October 2007.

Ветровые турбины можно запустить в массовое производство на сборочных конвейерах, точно так же, как во время Второй мировой войны производили бомбардировщики Б-24 на огромном заводе Форда в Уиллоу-Ран, штат Мичиган. Простаивающих мощностей в автомобильной индустрии США достаточно для производства всех ветровых турбин, необходимых миру для достижения поставленной в Плане Б цели. Тем более что помимо простаивающих заводов есть и достаточное количество сотрудников этих заводов — квалифицированных специалистов, жаждущих вернуться к работе. Например, в штате Мичиган, расположенном в сердце богатого ветрами региона Великих озер, более чем достаточно простаивающих автомобильных заводов [407] .

407

David L. Lewis, “They May Save Our Honor, Our Hopes — and Our Necks”, Michigan History, September/October 1993; Harry Braun, The Phoenix Project: Shifting from Oil to Hydrogen with Wartime Speed, prepared for the Renewable Hydrogen Roundtable, World Resources Institute, Washington DC, 10–11 April 2003, pp. 3–4; Kathy barks Hoffman, “GM Plant Shutdowns Further Hurt Michigan Budget”, Associated Press, 23 April 2009.

У ветра есть много достоинств. Для коммунальщиков и их клиентов возможность подписывать долгосрочные контракты с фиксированной ценой — великое благо. В этом смысле газ — это источник топлива с плавающей ценой, а работающие на угле электростанции — неопределенность будущих углеродных затрат.

Привлекательна ветровая энергетика и возможностью ускоренного, по сравнению с другими источниками энергии, развития. В 2008 г., например, в Европейском союзе на долю ветра приходилось 36 % новых генерирующих мощностей, на долю природного газа — 26 %, на долю солнечных батарей — 18 % новых мощностей. На долю нефти пришлось 10 % новых мощностей, а на долю угля — всего лишь 3 %. Начиная с 2005 г. в США ежегодно вводимые в эксплуатацию мощности генерирования электроэнергии с помощью ветра на порядок превосходили новые мощности, работающие на угле. Во всем мире в 2008 г. не было запущено ни одной атомной электростанции, в то время как новые мощности, работающие с помощью ветра, составили 27 000 мегаватт. Структура мировой энергетической экономики не просто меняется — она меняется стремительно [408] .

408

EWEA, “Wind Now Leads EU Power Sector”, press release (Brussels: 2 February 2009); Erik Shuster, Tracking New Coal-Fired Power Plants (Pittsburgh, PA: DOE, National Energy Technology Laboratory, January 2009); “Nuclear Dips in 2008”, World Nuclear News, 29 May 2009; GWEC, op. cit. note 10, pp. 10, 56–57.

СОЛНЕЧНЫЕ БАТАРЕИ И ТЕРМАЛЬНЫЕ КОЛЛЕКТОРЫ

Солнечную энергию можно уловить с помощью фотоэлектрических солнечных батарей и накопителей солнечного тепла. Солнечные фотоэлектрические батареи, чаще всего работающие на кремниевых полупроводниках и на тонкопленочных гибридных интегральных схемах, преобразуют солнечный свет непосредственно в электричество. Накопители солнечного тепла преобразуют солнечный свет в тепло, которое можно использовать, например, для нагревания воды, что и делают монтируемые на крышах солнечные водонагреватели.

Во всем мире наблюдается резкий рост генерации энергии с помощью фотоэлектрических установок. В 2008 г. производство электроэнергии на таких установках подскочило примерно на 5600 мегаватт. Солнечные фотоэлектрические батареи относятся к числу одного из самых быстроразвивающихся источников энергии, объем выработанной такими батареями энергии удваивается каждые два года. Установка по производству электричества из солнечной энергии мощностью в 1100 мегаватт в 2006 г. в Германии сделала эту страну первой, наращивающей производство электроэнергии более чем на 1 гигаватт (1000 мегаватт) в год [409] .

409

EPIA, op. cit. note 10, pp. 3–4.

До

недавнего времени производство электроэнергии фотоэлектрическими батареями было сосредоточено в Японии, Германии и США. Но теперь на поле вышли новые игроки — компании из Китая, Тайваня, Филиппин, Южной Кореи и Объединенных Арабских Эмиратов. В 2006 г. Китай обогнал США по производству фотоэлектрических батарей. Тайвань сделал то же самое в 2007 г. Сегодня существуют десятки компаний, конкурирующих на мировом рынке и наращивающих инвестиции как в исследования, так и в производство электроэнергии фотоэлектрическими батареями [410] .

410

Prometheus Institute and Greentech Media, “25th Annual Data Collection Results: PV Production Explodes in 2008”, PVNews, vol. 28, No. 4 (April 2009), pp. 15–18.

Для почти 1,6 млрд человек, живущих в поселениях, еще не подключенных к электросети, теперь зачастую дешевле устанавливать фотоэлектрические батареи на крышах, чем строить центральную электростанцию и сеть для подачи электричества потенциальным потребителям. Например, для жителей деревень в Андах, освещающих свои жилища сальными свечами, сумма ежемесячных платежей за установленные солнечные батареи за 30 месяцев меньше суммы, потраченной на свечи за один месяц [411] .

411

EIA, World Energy Outlook 2006 (Paris: 2006); “Power to the Poor”, The Economist, 10 February 2001, pp. 21–23.

Когда крестьянин покупает систему солнечных фотоэлектрических батарей, он, по сути, обеспечивает себя электричеством на 25 лет. Такие системы не требуют расходов на топливо и нуждаются лишь в минимальных затратах на техническое обслуживание, но их приобретение является прямым капиталовложением, которое надо профинансировать. Признавая это, Всемирный банк и Программа ООН по окружающей среде (ЮНЕП) выступили с инициативами оказания помощи местным кредитным учреждениям в создании систем кредитования этого дешевого источника электроэнергии. Первый заем, предоставленный Всемирным банком, помог 50 тысячам домовладельцев в Бангладеш приобрести солнечные батареи. Второй, более крупный заем позволит помочь в этом еще 200 тысячам семей [412] .

412

Sybille de La Hamaide, “Bangladesh Seeks World Bank Loan for Solar Power”, Reuters, 26 April 2007.

Индийские крестьяне, испытывающие нехватку электричества и активно эксплуатирующие керосиновые лампы, сталкиваются с похожими расчетами. Установка солнечных электрических систем, включая батареи, в Индии стоит примерно 400 долларов. Такие системы могут обеспечивать энергией два, три, четыре небольших бытовых прибора или светильника и широко использоваться в домах и на мелких предприятиях вместо керосиновых ламп, загрязняющих окружающую среду и обходящихся все дороже. За год керосиновая лампа сжигает почти 20 галлонов керосина, что при стоимости галлона керосина в 3 доллара составляет 60 долларов на одну лампу в год. Солнечная фотоэлектрическая система освещения, заменяющая две керосиновые лампы, окупит себя в течение 4 лет, а затем станет источником практически бесплатного электричества [413] .

413

“Solar Loans Light Up Rural India”, BBC News, 29 April 2007.

Отказ от керосина в пользу солнечных батарей — это также вклад в борьбу с изменениями климата. В мире, по общим оценкам, используют 1,5 млрд керосиновых ламп, которые обеспечивают менее 1 % всего освещения жилищ, но дают 29 % всех выбросов СО2, производимых при производстве энергии для освещения. Ежедневно в керосиновых лампах сжигают эквивалент 1,3 млн баррелей нефти, что равно приблизительно половине добычи нефти в Кувейте [414] .

В промышленно развитых странах стоимость солнечной энергии стремительно снижается. По оценкам Майкла Рогола и его консалтинговой компании PHOTON, к 2010 г. полностью интегрированные компании, охватывающие все фазы производства солнечных фотоэлектрических батарей, начнут монтировать системы, которые будут производить электричество по цене 12 центов за киловатт-час в солнечной Испании и по цене 18 центов за киловатт-час в южной Германии. Хотя эти издержки во многих местностях будут ниже уровня издержек традиционного производства электричества, это нельзя расценивать как начало автоматического всеобщего перехода на солнечные батареи. И, тем не менее, как замечает один из аналитиков энергетики, «большой взрыв» уже начался [415] .

414

Данные о выбросах, включая выбросы от сожжения керосина и других видов топлива, используемых для освещения, взяты из публикаций: IEA, Light’s Labour’s Lost: Policies for Energy-Efficient Lighting (Paris: 2006), pp. 201–202; DOE, EIA, International Petroleum Monthly — см.: www.eia.doe.gov/ipm/supply.html, материал обновлен 13 апреля 2009 г.

415

“PV Costs Set to Plunge for 2009/10”, Renewable Energy World, 23 December 2008; “PV Costs Down Significantly from 1998–2007”, Renewable Energy World, 23 February 2009; Christoph Podewils, “As Cheap as Brown Coal: By 2010, a kWh of PV Electricity in Spain Will Cost Around 9 c to Produce”, PHOTON International, April 2007.

Поделиться с друзьями: