Как микробы управляют нами. Тайные властители жизни на Земле
Шрифт:
Несмотря на все усилия Кендалла, Мечникова и других ученых, возрастающее внимание науки к патогенным бактериям задавило все попытки исследования бактерий-симбионтов в организмах человека и других животных. В памятках по здравоохранению начали рекомендовать избавляться от бактерий как в собственном теле, так и вокруг него, с помощью дезинфицирующих веществ и постоянного поддержания абсолютной чистоты. Тогда же ученые открыли первые антибиотики – вещества, подавляющие как микробов, так и их окружающую среду, – и пустили их в промышленное производство. У нас наконец-то появилась возможность одержать победу над нашими крошечными врагами. И вместе с тем начался период застоя в изучении бактерий-симбионтов, который продолжался вплоть до второй половины XX века. В опубликованном в 1938 году труде, посвященном истории бактериологии, живущие в наших телах микробы не упоминаются вообще [55] . Передовая на тот момент книга уделила им всего одну главу, в которой рассказывалось, как отличить полезных микробов от вредных. На них обращали внимание лишь затем, чтобы отделить их от микробов поинтереснее. Ученые, как правило, изучали бактерий только для того, чтобы лучше разобраться в других организмах. Выяснилось, что многие аспекты биоорганической химии – например, вопросы переключения генов и накопления энергии – у всех живых существ одинаковые. Путем изучения кишечной палочки ученые пытались понять, как устроены слоны. Бактерии стали «суррогатом
55
Bulloch, 1938.
56
Фанке Сангодейи – одна из немногих историков, описавших этот период в развитии микробной экологии. Ее диссертацию (Sangodeyi, 2014) стоит прочитать хотя бы поэтому.
И ее путь к признанию был очень долгим. Во многом помогли новые технологии, позволяющие, например, выращивать не выносящих кислород кишечных микробов, – благодаря им ученые смогли исследовать множество важных для нас микроорганизмов, которые раньше были им недоступны [57] . Да и отношение к микробиологии начало меняться. Благодаря экологическим микробиологам Делфтской школы до ученых дошло, что нужно изучать сообщества микробов в их естественной среде – в данном случае в организмах животных, – а не засовывать их по отдельности в пробирку. Врачи, работающие не в центральных отраслях медицины, таких как стоматология и дерматология, начали изучать микробную экологию органов, с которыми работают [58] . Они «противопоставляли свой труд тому, что на тот момент считалось в микробиологии важным», писала Сангодейи. Однако они работали в одиночку. Ботаники также изучали микробов, живущих на растениях, а зоологи разбирались с микробами животных. Микробиология была разделена по интересам, усилия отдельных ученых запросто игнорировались – ведь между ними не было связи. Не существовало единого сообщества ученых, занимающихся изучением микробов-симбионтов, а значит, не было и посвященной этому отрасли науки. Кто-то должен был в лучших традициях симбиоза соединить отдельные части в нечто большее.
57
Роберт Хангейт, выходец делфтской школы в четвертом поколении, заинтересовался микробами, живущими в пищеварительных трактах растительноядных животных, таких как термиты и домашний скот. Он разработал следующий метод: пробирка изнутри покрывалась агаром, а кислород из нее удалялся с помощью углекислого газа. С помощью этого метода бактериологи наконец-то получили возможность выращивать анаэробных микробов, обитающих в пищеварительных трактах животных, в том числе и нас с вами (Chung, Bryant, 1997).
58
Американский стоматолог Джозеф Эплтон решил последовать примеру Левенгука и изучить бактерий ротовой полости. С 1920-х по 1950-е годы он и другие следили за изменениями в сообществах бактерий во рту при заболеваниях ротовой полости и за тем, как на них влияет слюна, пища, возраст и время года. Во рту микробы куда менее привередливы, чем в кишечнике: можно было брать пробу ватной палочкой, а еще они ничего не имели против кислорода. Изучая их, Эплтон помог превратить стоматологию – второстепенную отрасль медицины – из обычной профессии в настоящую науку (Sangodeyi, 2014, сс. 88 – 103).
В 1928 году этим занялся Теодор Розбери, микробиолог, специализирующийся на бактериях полости рта. В течение более 30 лет он по кусочку собирал все статьи, посвященные человеческому микробиому, а в 1962 году сплел из этих ажурных кусочков прочное полотно – открывающую новые горизонты книгу «Микроорганизмы, обитающие на человеке» [59] . «Насколько я знаю, никто до меня не пытался создать подобную книгу, – писал он. – Похоже, здесь эта тема впервые рассматривается как отдельная отрасль науки». И он был прав. Его книга поражала своей детальностью и масштабом, она стала предвестницей книги, которую вы сейчас читаете [60] . Он в подробностях рассказал об обычных бактериях, населяющих каждую часть нашего тела. Он описал, как микробы заселяют организм новорожденного ребенка. Он высказал предположение, что они вырабатывают витамины и антибиотики, а также защищают организм от вызванных патогенами инфекций. Он заметил, что после курса антибиотиков микробиом возвращается в свое нормальное состояние, но при постоянном приеме может преобразиться окончательно. «На нормальную флору так до сих пор и не обращают внимания, – огорчался он. – Эта книга написана в том числе и для того, чтобы навести на мысль, что пора бы начать».
59
Rosebury, 1962.
60
Еще Розбери написал первую научно-популярную книгу о человеческом микробиоме – опубликованный в 1976 году бестселлер «Жизнь на человеке».
И у нее это получилось. Созданный Розбери сборник трудов вернул чахнувшую отрасль науки к жизни и побудил множество ученых к новым исследованиям [61] . Одним из них стал Рене Дюбо, обаятельный американец французского происхождения. К тому времени он уже заявил о себе, следуя учениям Делфтской школы об экологии. Изучая почвенных микробов, он сумел получить лекарства, которые в числе других положили начало эпохе антибиотиков. Однако Дюбо считал, что с помощью этих лекарств микробов нужно приручать, а не уничтожать. Он предпочитал не называть микробов врагами человечества и избегал воинственных метафор даже в своем позднем труде о туберкулезе и пневмонии. Он всем сердцем обожал природу, а микробы – это ее часть. «В течение всей своей жизни он был уверен, что живой организм можно понять лишь через его связи со всем остальным», – писала Сьюзен Моберг, составительница его биографии [62] .
61
Дуэйн Сэвидж замечательно описал все последующие исследования (Savage, 2001).
62
Биография Рене Дюбо, написанная Моберг, описывает его жизнь в красочных подробностях (Moberg, 2005).
Он видел, что наши микробы-симбионты важны, и его удручало то, что никто не обращал на них внимания. «Сведения о том, что микроорганизмы могут быть человеку полезны, никогда никого особо не привлекали, ведь, как правило, люди предпочитают разбираться с тем, что непосредственно им угрожает, забывая про силы природы, от которых зависит их жизнь, – писал он. – История военных действий всегда манит сильнее, чем рассказы о сотрудничестве. Чума, холера и желтая лихорадка становятся героями романов, пьес и фильмов, но никто еще не прославился, написав повесть о пользе микробов в кишечнике
или желудке» [63] . Вместе со своими коллегами Дуэйном Сэвиджем и Расселом Шедлером он попытался выяснить, какую роль в организме играют микробы. Они доказали, что после уничтожения местных видов микробов их место занимают более вредные захватчики. Изучая мышей, выращенных в стерильных инкубаторах, они выяснили, что эти грызуны меньше жили и медленнее росли, имели предрасположенность к стрессу и инфекционным заболеваниям, а их пищеварительная и иммунная системы не могли нормально развиваться. «Некоторые виды микробов играют важнейшую роль в развитии и физиологии обычных животных и людей», – писал он [64] .63
Dubos, 1987, с. 62.
64
Dubos, 1965, сс. 110–146.
Однако Дюбо понимал, что это только начало. «Очевидно, что [уже известные бактерии] являются лишь небольшой частью всего местного сообщества микробов, причем не самой важной», – писал он. Все остальные – что-то около 99 % от всех наших микробов – наотрез отказывались расти в лабораторных условиях. Это «некультурное большинство» обескураживало. Несмотря на все исследования со времен Левенгука, микробиологи не знали ровным счетом ничего о существах, которых, по идее, должны изучать. Мощные микроскопы не помогали. Разные методы культивации микробов тоже не помогали. Нужен был другой подход.
В конце 1960-х молодой американец Карл Везе начал работу над проектом весьма узкой направленности. Проект заключался в сборе различных видов бактерий и анализе молекулы 16S рРНК, присутствовавшей в каждой бактерии. Ни один из его коллег не представлял, зачем это нужно, так что конкурентов у Везе не было. «В этом забеге участвовала лишь одна лошадь», как он потом говорил [65] . Забег дорого ему обходился, медленно продвигался и был довольно опасным – для него требовалось немалое количество жидких радиоактивных веществ. Вместе с тем он оказался революционным.
65
Цитата из интервью для The New York Times (Blakeslee, 1996). Чтобы узнать больше о революционных открытиях Везе, см. One Plus One Equals One Джона Арчибальда (Archibald, 2014) и The New Foundations of Evolution Яна Саппа (Sapp, 2009).
В те времена для установления родственных связей между видами биологи полагались исключительно на физические черты особей. Чтобы понять, кто кому приходился родичем, их сравнивали по размеру, форме и устройству организма. Везе же считал, что молекулы жизни – ДНК, РНК и белки, без которых не обходится ни одно живое существо, – помогут ему лучше справиться с этой задачей. Со временем в этих молекулах накапливаются изменения, так что у близкородственных видов они более похожи, чем у состоящих в дальнем родстве. Везе был убежден, что, сравнив нужную молекулу у достаточного количества разных видов бактерий, он прольет свет на все ветви и стволы древа жизни [66] .
66
Сама идея принадлежит не Везе. Фрэнсис Крик, один из соавторов открытия двойной спирали ДНК, предложил похожую стратегию в 1958 году, а Лайнус Полинг и Эмиль Цукеркандль предложили использовать молекулы в качестве «свидетельств эволюционной истории» в 1965 году.
Он остановился на молекуле 16S рРНК, за которую отвечает одноименный ген. Она составляет часть производящего белки аппарата, имеющегося у всех живых организмов, а Везе как раз это и было нужно. К 1976 году он составил описание 16S рРНК около 30 разных видов микробов. В июне того года он занялся видом, который вскоре изменил его жизнь – а также биологию.
Вид этот ему предоставил Ральф Вулф – к тому времени уже эксперт по малоизученной группе микробов, называемых метаногенами. Для жизни этим крошкам требовались в основном лишь водород и углекислый газ, которые они превращали в метан. Обитали они в болотах, океанах и человеческом кишечнике – Methanobacterium thermoautotrophicum, что прислал Вулф, была найдена в горячих канализационных отходах. Везе, как и все остальные, решил, что это всего лишь очередная бактерия, хоть и со странными привычками. Однако, взглянув на ее 16S рРНК, он удивился – молекула оказалась какой-то небактериальной! Есть разные версии того, насколько полно он осознал свое открытие, как отреагировал на него и запросил ли повторный эксперимент. Однако одно мы знаем точно: к декабрю его научная группа провела секвенирование еще нескольких метаногенов и заметила в каждом из них те же особенности. Вулф делится воспоминаниями о словах Везе: «Эти штуки и бактериями-то не являются».
Результаты исследования Везе опубликовал в 1977 году. В своей статье он назвал метаногенов архебактериями – позже их стали называть археями [67] . По словам Везе, они были не бактериями со странностями, а представителями совершенно новой формы жизни. Утверждение было действительно шокирующим. Везе в прямом смысле вытащил этих микробов из навозной кучи и поставил на один уровень с вездесущими бактериями и могучими эукариотами! Как будто все вокруг разглядывали карту мира, а Везе, не говоря ни слова, разложил перед ними еще треть карты, прежде скрытую.
67
Молодой ученый Джордж Фокс работал вместе с Везе и был соавтором его главного труда (Woese, Fox, 1977).
Разумеется, без шумной критики не обошлось, причем даже от других ученых-бунтарей. Журнал Science позже окрестил его «покрытым шрамами эволюционером микробиологии», и шрамы эти остались у него до конца жизни, завершившейся в 2012 году [68] . Сегодня его наследие не вызывает сомнений. Он оказался прав: археи действительно не являются бактериями. И что еще более важно, разработанный им подход – сравнение генов для выяснения степени родства между видами – в современной биологии является одним из главных [69] . Его методы позволили другим ученым – например, его давнему другу Норману Пейсу – начать исследовать мир микробов по-настоящему.
68
Morell, 1997.
69
Этот подход, известный как молекулярная филогенетика, разбросал по древу жизни множество групп, которые раньше считались родственными из-за внешнего сходства, и объединил существ, которые, несмотря на совершенно разную внешность, оказались родичами. Также благодаря ему было окончательно доказано, что митохондрии – те самые крохотные овальчики, вырабатывающие энергию для клеток, – когда-то были бактериями. У них были собственные гены, явно напоминающие бактериальные. То же относится и к хлоропластам, позволяющим растениям использовать энергию солнца в процессе фотосинтеза.