Как мы учимся. Почему мозг учится лучше, чем любая машина… пока
Шрифт:
Инновационные компьютерные алгоритмы, учитывающие этот новый подход к научению, называются «байесовскими» – в честь преподобного Томаса Байеса (1702–1761), который сформулировал отдельные элементы этой теории еще в XVIII веке. Я предполагаю, что байесовские алгоритмы произведут настоящую революцию в машинном обучении: уже сегодня они способны извлекать абстрактную информацию не хуже любого ученого.
Наше путешествие в современную науку о научении состоит из трех частей.
Первая часть под названием «Что такое научение?» начинается с определения того, что значит для человека или животного – и для любого алгоритма или машины – учиться новому. Идея проста: учиться – значит последовательно формировать как в искусственных, так и в естественных нейронных сетях внутреннюю модель внешнего мира. Гуляя по незнакомому городу, я составляю его мысленную карту – миниатюрную модель улиц и переулков. Точно так же ребенок, который учится кататься на велосипеде, формирует подсознательную симуляцию того, как движения ног, нажимающих на педали, и рук, поворачивающих руль, влияют на устойчивость велосипеда. Аналогичным образом компьютерный алгоритм, который учится распознавать лица, собирает шаблонные модели возможных форм глаз,
Но как мы создаем правильную ментальную модель? Как мы увидим далее, ум учащегося можно уподобить гигантской машине с миллионами регулируемых параметров; настройки этих параметров в совокупности и определяют то, чему мы научились (например, где скорее всего будут находиться улицы на нашей ментальной карте окрестностей).
В головном мозге параметры – это синапсы, связи между нейронами, сила которых варьируется; в большинстве современных компьютеров параметры – это регулируемые веса или вероятности, определяющие силу каждой приемлемой гипотезы. Таким образом, научение – как в мозге, так и в машинах – требует поиска оптимального сочетания параметров, которые вместе определяют ментальную модель во всех ее подробностях. В этом смысле научение – проблема поиска; чтобы лучше понять, как научение работает в человеческом мозге, необходимо изучить, как алгоритмы обучения работают в современных компьютерах.
Сравнивая компьютерные алгоритмы с алгоритмами мозга in silico [5] и in vivo [6] , мы постепенно получим более четкое представление о том, что означает научение на уровне мозга. Конечно, математикам и специалистам в области вычислительных систем не удалось разработать алгоритмы обучения, столь же мощные, как человеческий мозг, – пока. Тем не менее они все больше склоняются к теории оптимального алгоритма обучения, который должна использовать любая система, если она стремится к максимальной эффективности. Согласно этой теории, лучший ученик действует, как ученый, рационально использующий вероятности и статистику. Возникает новая модель: модель мозга как статистика, при которой корковые области мозга обрабатывают данные о вероятностях событий. Данная теория подчеркивает четкое разделение труда между наследственностью и средой: гены создают обширные пространства априорных гипотез, из которых впоследствии среда выбирает те, которые наилучшим образом описывают внешний мир. Иными словами, набор гипотез задан генетически, но их отбор зависит от опыта.
5
In silico (лат. «в кремнии») – термин, обозначающий компьютерное моделирование эксперимента; создан по аналогии с in vivo и in vitro. (Прим. перев.)
6
In vivo (лат. «внутри живого организма», «внутри клетки») – латинский термин, обозначающий проведение экспериментов на живом организме. (Прим. перев.)
Согласуется ли эта теория с тем, как на самом деле работает мозг? И как научение реализуется в биологических нейронных сетях? Какие изменения происходят в нашем мозге, когда мы приобретаем новую компетенцию? Во второй части книги, «Как учится наш мозг», мы обратимся к психологии и нейробиологии. Особое внимание будет уделено младенцам – подлинным и непревзойденным самообучающимся машинам. Согласно новейшим исследованиям, они действительно ведут себя как юные специалисты по статистике. Их поразительная интуиция в сферах языка, геометрии, чисел и статистики подтверждает: младенцы могут быть чем угодно, но только не «чистым листом», tabula rasa [7] . При рождении детский мозг уже организован, он проецирует гипотезы на внешний мир с самого первого дня. Кроме того, дети обладают значительным запасом пластичности, которая отражается в беспрерывных изменениях синапсов. В пределах этой статистической машины наследственность и среда не противостоят друг другу – напротив, они действуют сообща. Результатом является структурированная, но пластичная система с уникальной способностью к самовосстановлению после травм и переориентации уже существующих нейронных сетей на овладение навыками, не предусмотренными эволюцией, – например, чтением или математикой.
7
Cпор о tabula rasa является одним из старейших споров в философии и связан с представлением о том, рождаются люди с уже заложенными в них индивидуальными различиями или нет. (Прим. научн. ред.)
В третьей части книги, «Четыре столпа научения», я подробно расскажу о некоторых хитростях, которые делают наш мозг самым эффективным самообучающимся устройством, известным на сегодняшний день. В значительной степени нашу способность к научению модулируют четыре основных механизма. Первый – это внимание, система нейронных сетей, которые отбирают, усиливают и передают сигналы, считающиеся нами релевантными, тем самым усиливая их воздействие в нашей памяти в сто раз. Второй столп – активное вовлечение: пассивный организм почти ничему не научится, ибо научение требует активного генерирования гипотез, мотивации и любопытства. Третий столп – обратная связь: всякий раз, когда реальность не совпадает с нашими ожиданиями, в нашем мозге распространяются сигналы ошибки. Они корректируют имеющиеся ментальные модели, исключают непригодные гипотезы и стабилизируют наиболее точные. Наконец, четвертый столп – это консолидация: периодически наш мозг компилирует (собирает воедино) то, что он усвоил, и переносит это в долговременную память, тем самым высвобождая нейронные ресурсы для дальнейшего научения.
Важную роль в этом процессе консолидации играет повторение. Мозг активен даже во сне; во время сна он в ускоренном темпе воспроизводит свои прошлые состояния и перекодирует знания, приобретенные в течение дня.Эти четыре столпа универсальны: младенцы, дети и взрослые всех возрастов используют их каждый раз, когда задействуют свою способность к научению. Вот почему все мы должны научиться владеть ими – именно так мы сможем научиться учиться. В заключении мы обсудим практические последствия этих научных открытий. Изменить наши подходы к научению и обучению в школе, дома или на работе вовсе не так сложно, как кажется. Простые рекомендации касательно игр, любознательности, социализации, концентрации и сна помогут еще больше развить то, что и так является величайшим талантом нашего мозга, – способность учиться.
Часть I
Что такое научение?
По сути, интеллект можно рассматривать как процесс преобразования неструктурированной информации в полезные и актуальные знания.
Что такое научение? Во многих языках это слово имеет тот же корень, что и латинский глагол apprehendere («схватывать»): apprehending в английском, apprendre во французском, aprender в испанском и португальском. И действительно, научиться – значит уловить некий фрагмент реальности и перенести его в мозг. В когнитивных науках принято считать, что научение состоит в формировании внутренней модели мира. В процессе научения первичные данные, которые улавливают наши органы чувств, превращаются в более или менее абстрактные идеи, пригодные для повторного использования в новом контексте, – малые модели реальности.
Ниже мы узнаем, что обо всем этом говорит когнитивистика и наука об искусственном интеллекте. Как возникают такие внутренние модели в мозге и машинах? Как меняется репрезентация (представление) информации, когда мы учимся? Что происходит на уровне, общем для любого организма – будь то человек, животное или компьютер? Обсудив различные инженерные хитрости, позволяющие машинам учиться, мы получим более четкое представление о той невероятной работе, которую проделывает мозг всякого ребенка, когда он учится видеть, говорить и писать. Как ни странно, детский мозг сохраняет преимущество: несмотря на все технические и научные достижения, современные алгоритмы машинного обучения копируют лишь малую часть способностей человеческого мозга. Разобравшись, где заканчивается машинное обучение и в чем мозг ребенка превосходит даже самый мощный компьютер, мы точно определим, что значит «научение».
Глава 1
Семь определений научения
Что значит «научение»? Мое первое и самое общее определение таково: научиться – значит сформировать внутреннюю модель внешнего мира.
Вы можете этого не осознавать, но ваш мозг хранит тысячи таких моделей. Образно говоря, они похожи на миниатюрные муляжи, более или менее точно повторяющие реальность. Например, у всех нас есть ментальная карта района и дома, в котором мы живем, – достаточно закрыть глаза и мысленно представить их в мельчайших подробностях. Разумеется, никто из нас не родился с этой картой – мы приобрели ее посредством научения.
Богатство и разнообразие наших ментальных моделей, по большей части бессознательных, поражает воображение. Так, у любого англоговорящего читателя имеется обширная ментальная модель английского языка; благодаря ей он понимает слова, которые сейчас читает, и может догадаться, что слово plastovski – не английское, слова swoon и wistful – точно английские, а слово dragostan – возможно [8] . Помимо языковой модели, мозг содержит и несколько моделей тела, которые он постоянно использует для коррекции положения конечностей при движении и для поддержания равновесия. Другие ментальные модели кодируют наши знания о физических объектах и взаимодействии с ними: вы знаете, как держать ручку, писать или ездить на велосипеде. Третьи описывают близких нам людей: у каждого человека имеется огромный ментальный каталог его родственников и знакомых, в котором задокументированы их внешность, голоса, вкусы и причуды.
8
Plastovski – слово с нетипичным для английского языка окончанием; swoon («обморок») и wistful («задумчивый») – типичные английские слова; dragostan – слово, отсутствующее в английском языке, но имеющее допустимый для английского языка фонетический и морфологический состав. (Прим. перев.)
Эти ментальные модели способны генерировать гиперреалистичные симуляции окружающей нас вселенной. Вы замечали, что иногда ваш мозг устраивает самые настоящие виртуальные реалити-шоу, в которых вы ходите, танцуете, посещаете новые места, ведете интересные беседы или испытываете сильные эмоции? Конечно, я говорю о снах! Кажется невероятным, но все мысли, которые приходят к нам в сновидениях, есть не что иное, как продукт неконтролируемой работы внутренних моделей мира.
Впрочем, мы «изобретаем» реальность не только во сне: бодрствуя, наш мозг постоянно проецирует гипотезы и интерпретативные системы на внешний мир. Это происходит потому, что каждое изображение, попадающее на сетчатку глаза, неоднозначно. Например, всякий раз, когда мы видим тарелку, ее изображение подобно бесконечному количеству эллипсов. Почему же мы видим тарелку круглой, хотя органы чувств говорят нам, что она овальная? Все дело в дополнительных данных, которые поставляет наш мозг: он знает, что круглая форма – наиболее вероятная интерпретация. За кулисами сенсорные области непрерывно вычисляют вероятности, и в сознание попадает только наиболее вероятная модель. Именно проекции мозга в конечном счете придают смысл потоку данных, поступающему от органов чувств. В отсутствие внутренних моделей необработанные сенсорные данные остались бы бессмысленными.