Чтение онлайн

ЖАНРЫ

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:

Теперь посмотрим, является ли стационарным логарифмический временной ряд, на основе которого построена наша статистическая модель. С этой целью проведем тестирование логарифмического временного ряда с помощью расширенного теста Дикки — Фуллера (табл. 7.22). При этом уровень значимости (Prob.*) одностороннего t– критерия получился равным 0,2908, а потому нулевая гипотеза о нестационарности логарифмического временного ряда не отвергается.

Таким

образом, мы получили статистическую модель со стационарной ARMA-структурой, построенной на основе нестационарного логарифмического временнoго ряда. Посмотрим, получим ли мы в результате стационарные остатки, что весьма важно для получения надежных прогнозов. С этой целью проведем с помощью расширенного теста Дикки — Фуллера тестирование остатков, полученных после решения уравнения регрессии log(EURUSD) = а x log(EURUSD(-l)). Судя по табл. 7.23, можно сделать вывод, что мы получили стационарные остатки, поскольку уровень значимости теста (Prob.) оказался равен нулю.

Для проверки качества модели log(EURUSD) = а x log(EURUSD(-l)) посмотрим, во-первых, как изменяется с увеличением лага автокорреляция и частная автокорреляция в остатках, во-вторых, насколько соответствуют фактические значения коррелограммы остатков их теоретическим значениям. Судя по рис. 7.8, по мере роста величины лага уровень автокорреляции постепенно снижается, асимптотически стремясь к нулю, а частная автокорреляция падает почти до нуля, начиная со 2-го лага. Правда, при этом фактический уровень автокорреляции (нижние вертикальные линии) падает гораздо быстрее его теоретических значений (верхняя пологая точечная линия). Что же касается динамики фактического уровня частной автокорреляции (вертикальные линии), то она практически совпадает с его теоретическими значениями (верхняя точечная линия).

Тестирование на импульсный ответ ARMA-структуры модели log(EURUSD) = а x log(EURUSD(-l)) хотя и показало ее стационарность, однако вместе с тем выявило тот факт, что для достижения стабильности модели требуется весьма длительное тестовое время. Как хорошо видно из рис. 7.9, величина импульсного ответа и величина накопленного импульсного ответа по мере увеличения периодов тестирования на внешние шоки (инновационную неопределенность) асимптотически стремятся: первая — к нулю, а вторая — к определенному пределу. Однако, чтобы показать на рисунке обе эти тенденции, мы были вынуждены увеличить время тестирования до 5000 периодов.

Убедившись, что статистическая модель log(EURUSD) = а x log(EURUSD(-l)) в целом адекватна, составим с ее помощью прогноз с упреждением в один день на 14 сентября 2010 г. При этом используются данные курса евро к доллару, взятые с интервалом в один день (цена закрытия) с 5 января 1999 г. по 13 сентября 2010 г. Согласно полученному точечному прогнозу, курс евро на 14 сентября 2010 г. должен был равняться 1,2800 дол., хотя в действительности единая европейская валюта в этот день стоила 1,2850 дол., т. е. ее курс отклонился на 0,5 цента. Таким образом, прогноз курса евро к доллару оказался точным при интервальном прогнозе, составленном с 50 %-ным уровнем надежности.

Полученная в результате составления прогноза средняя ошибка индивидуального прогнозного значения курса евро оказалась равна 0,0085, дол., или 0,85 цента. Ее мы использовали для составления рекомендуемых цен покупки и продажи, воспользовавшись алгоритмом действий № 24. При этом для расчета рекомендуемых цен покупки и продажи в качестве среднего значения для

нормального распределения был взят фактический курс евро на конец 13 сентября 2010 г. (точнее сказать, на 24 часа по GMT, т. е. на 24 часа по Гринвичу), равный 1,2997 дол.

На основе этих данных мы составили рекомендуемые цены покупки и продажи евро относительно к доллару на 14 сентября, при этом торги велись с интервалом в один час по ценам открытия. Рассчитанные нами рекомендуемые цены продажи и покупки представлены в табл. 7.24.

Прежде чем перейти к тестированию по рыночным данным эффективности рекомендуемых цен покупки и продажи, необходимо сначала убедиться в их обоснованности. Нужно посмотреть, какая доля цен покупки или продажи, рассчитанных по этой методике, оказалась ниже (или выше) фактического курса евро к доллару в конце торгового дня.

С этой целью мы рассчитали рекомендуемые курсы покупки и продажи евро за период с 5 января 1999 г. по 13 сентября 2010 г., а затем отклонения рекомендуемых цен от заданного уровня надежности. В таблице 7.25 показан фактический риск того, что рекомендуемая цена продажи единой европейской валюты, вычисленная с определенным уровнем надежности, в действительности может оказаться ниже курса евро к доллару на конец торгового дня (цена закрытия).

Из таблицы 7.25 можно сделать вывод, что вероятность удачной сделки при продаже евро по ценам, рассчитанным с 95 %-ным уровнем надежности и при более низких уровнях надежности, выше заданного уровня надежности. При 60 %-ном уровне надежности эта положительная разница достигает своего максимума — 4,1 процентного пункта. Правда, при продаже евро с 99 %-ным уровнем надежности вероятность удачной сделки чуть ниже установленного уровня надежности.

Всего проведено 2996 наблюдений.

В таблице 7.26 показан фактический риск того, что рекомендуемая цена покупки евровалюты, вычисленная с определенным уровнем надежности, в действительности может оказаться выше ее курса на конец торгового дня. Судя по этой таблице, фактическая вероятность удачной сделки оказалась выше установленного уровня надежности при 95 %-ном и более низких уровнях надежности. Причем при 70 %-ном уровне надежности эта положительная разница в пользу фактической вероятности удачной сделки достигает своего максимума — 4,3 процентного пункта. Правда, при 99 %-ном уровне фактический уровень надежности оказался немного ниже заданного уровня надежности.

Сравнив табл. 7.25 и 7.26, нетрудно прийти к выводу, что вероятности удачной сделки как при покупке, так и при продаже евро относительно доллара друг от друга практически не отличаются. В то время как вероятность удачной сделки при покупке доллара на рубли, как правило, несколько выше, чем при его продаже. Очевидно, это объясняется тем, что уровень инфляции в США и странах еврозоны является вполне сопоставимым, а также гораздо меньшим вмешательством Федеральной резервной системы США и Европейского центрального банка (по сравнению с Банком России) в процесс регулирования курса своих валют.

Поскольку 14 сентября с нуля часов до трех часов утра по Гринвичу курс евро к доллару довольно устойчиво рос, то первым в торгах смог участвовать инвестор, установивший цену продажи евро с 60 %-ным уровнем надежности, который продал евро по курсу 1,3021 дол. Однако затем тренд на рынке изменился, и курс евро стал снижаться. Причем в 7 часов утра курс евро настолько резко понизился, что его смогли приобрести инвесторы, установившие цену покупки евро с 60 %-ными, 70 %-ными, 80 %-ными и 90 %-ными уровнями надежности, которые приобрели евровалюту по курсу 1,2886 дол. (рис. 7.10).

Поделиться с друзьями: